

White Paper Analysis of Utility-Managed, On-Site Energy Storage in Minnesota

Presentation Prepared for the Minnesota Department of Commerce, Division of Energy Resources

Presented By: Giovanni Damato, Strategen Consulting

Analysis Support Presented By: Ben Kaun, EPRI

Solar Powering Minnesota at the University of St. Thomas March 7, 2014

Strategen Consulting Overview

We combine strategic thinking with deep industry expertise to create profitable businesses

A sampling of our clients:

- Independent, non-profit, collaborative research institute, with full spectrum industry coverage
 - o Nuclear
 - Generation
 - Power Delivery & Utilization
 - Environment & Renewables
- Major offices in Palo Alto, CA; Charlotte, NC; and Knoxville, TN

Agenda

- **1. Executive Summary**
- 2. Scope of Analysis
- **3.** Results
- 4. Key Barriers
- 5. Conclustions & Recommendations
- 6. Q&A

Executive Summary

- » Climate change has spurred increased societal and political interest to investigate energy efficiency and renewables in Minnesota
- » Distributed PV generation is one of the potential renewable options for further investigation
- » Storage co-located with PV on the distribution system may have the potential to optimize economic, societal, and environmental impacts to achieve future Minnesota energy goals
- Minnesota currently has several distributed energy storage pilot projects, with many already eligible for the Conservation Improvement Program (CIP)

» Grid-Level Benefits

- Improved Economics: avoided generation and T&D buildout
- Increased Reliability: improved flexibility and resiliency by providing fast, distributed reserves
- Improved Environmental Performance: reliably integrate higher penetration levels of solar and wind

» Customer-Level Benefits

- Bill Savings: demand charge reduction (commercial) or time-of-use energy saving
- Backup Power: outage mitigation, standalone or combined with PV

Executive Summary: Key Conclusions

- » Utility controlled, customer sited storage in Minnesota has the potential to provide benefits to the grid greater than the storage system's costs
- » Utility controlled, customer sited storage systems may need to capture
 THREE of the FOUR following key benefits to be economic:
 - a. Distribution upgrade deferral
 - b. Frequency regulation
 - c. System capacity
 - d. Co-located and configured with PV to capture the Federal Investment Tax Credit (FITC)
- » Customer controlled, customer sited storage that relies upon customer tariffs alone did not result in economic value without incentives

Executive Summary: Business Models

- » Given that certain utility controlled, customer sited storage cases have potential positive economic returns, how might the business model work?
- » One economic scenario modeled in this analysis is the example of capturing distribution upgrade deferral, MISO market participation, and system capacity:

Executive Summary: Business Models (Cont.)

Using the example scenario of capturing distribution upgrade deferral, MISO market participation, and system capacity, two potential business models may work in this way:

Additional Potential Benefits Outside Study Scope

- » System-wide operational improvements
- » Future grid services such as ramping and flexible capacity
- » Improving utility reliability metrics (SAIDI/SAIFI, etc)
- » Reducing GHGs
- » Job creation

Scope of Analysis

Energy Storage Roles on the Grid: Study Scope

Energy storage is broad category including diverse technologies and benefits to the electric grid.

- » Does a customer sited energy storage scenario exist that is economical or nearly economical over the project lifetime from the customer or utility perspective, in the 1-3 year time frame?
- » If the answer is 'yes', what are some of the key factors that affect the cost-effectiveness in those cases?

Pursuant to legislation passed in 2013 (Value of On-Site Energy Storage: MN Laws 2013, Chapter 85 HF 729, Article 12, Section 5),[1] the Minnesota Department of Commerce is required to contract with a qualified contractor to produce a white paper analysis of the potential costs and benefits of installing utility-managed, grid-connected energy storage devices in residential and commercial buildings in Minnesota.

[1] https://www.revisor.leg.state.mn.us/laws/?id=85&doctype=Chapter&year=2013&type=0

» Project Lifetime Costs and Benefits (NPV)

Estimate the potential value (including project costs and benefits) of on-site energy storage devices as a load-management tool to reduce costs for individual customers and for the utility, including but not limited to reductions in energy, particularly peaking, costs, and capacity costs

» Integration with Solar PV

Examine the interaction of energy storage devices with on-site solar photovoltaic devices

» Barriers

Analyze existing barriers to the installation of on-site energy storage devices by utilities, and examine strategies and identify potential economic incentives to overcome those barriers

Four General Use Cases

- 1. Customer Controlled for Bill Savings
- 2. Utility Controlled for Distribution System Benefits
- 3. Utility Controlled for Distribution and Market Benefits
- 4. Shared Customer and Utility Controlled for Bill Savings and Market Revenue

Storage Siting Options for Each Use Case

- » Standalone Storage
- » Storage Integrated with Solar PV
- » Residential Customer Sites
- » Commercial Customer Sites

Across the four use cases, approximately fifty (50) different energy storage cases were modeled and simulated using the EPRI Energy Storage Valuation Tool (ESVT), spanning a range of input assumptions and benefit stream combinations

Inputs

- » Utility Value Public data, inputs from MN utilities
- » Energy Storage Technology Public data from California
 PUC storage proceeding

Model

» EPRI Energy Storage Valuation Tool - Utilized previously with California PUC

Outputs

» Project lifetime Benefit-to-Cost (B/C) ratio and Net Present Value (NPV)

Energy Storage Valuation Tool (ESVT)

1984 Cell Phone Thought Experiment

- » Your employer would like you to perform an economic evaluation of new technology
- » How would you determine the cost-effectiveness of new cell phone technology?

Answer: Avoided cost and incremental profit (We know now that there is much more...)

Results

Benefit-to-Cost Ratio Ranges by Modeled Use Case

For each case, a benefit-to-cost (B/C) ratio was generated to show the direct, quantifiable fixed and variable costs and benefits, incorporating the time value of money, for the modeled project over its lifetime.

A benefit to cost ratio greater than one means that the <u>modeled</u> benefits exceed the project costs; in other words, the net present value (NPV) was greater than zero, and for this study had an return (IRR) greater than the 11.5% discount rate

Use Case 1 - Customer-Controlled Storage for Bill Savings

- » Storage can shift usage (from utility's perspective) from on-peak (day) to off-peak night
 - Some customers pay varying electric rates by time-of-day
- » Storage can "shave peaks" of usage to reduce demand charges
 - Many commercial customers pay a demand charge levied proportional to peak instantaneous monthly power draw (kW)
- » Storage may be available to provide back-up power if configured as a uninterruptible power supply (UPS)

- » Screen utility tariffs for possible storage value
 - Find high demand charges and large time-of-use (TOU) spreads
- » Collect (anonymous) customer load data in Minnesota
 - Loads with more on-peak consumption and "peaky" peak usage
- » Model cases with highest potential for a value proposition
 - Focus on demand charge savings, then find incremental opportunity for time-of-use shifting

ESVT Model Prioritization

Use Case 1 Results - Customer Controlled Storage

Best Case Result - University Load on Xcel GS-TOU (S) Tariff

Consistent with prior analyses showing challenging economics for customer controlled storage without additional incentives

Use Case 2 - Utility Controlled for Distribution Benefits

- » Storage can "shave peaks" from circuit loads to defer or avoid new capital expenditure
 - Substation transformer upgrades can be expensive
- Storage may also provide both real power and reactive power (VARs) to manage high penetration solar
 - Quantification of this benefit not included -- subject of significant research
- » Storage may be available to provide utility supplied back-up power if configured as a uninterruptible power supply (UPS)

- Collect publicly available and utility-provided substation load and upgrade cost data
 - Find high demand charges and large time-of-use (TOU) spreads
- Model storage capability and value to defer upgrades driven by load growth for a few years

ESVT Model Prioritization

Use Case 2 Results - Storage for Distribution Benefits

Substantial value from upgrade deferral possible -- if available -- but typically insufficient as a single benefit stream to justify the costs of an energy storage system

Lower Growth Rate = Longer Deferral = More Value

Use Case 3 - Storage for Distribution + Market Benefits

- » Builds on prior case with distribution upgrade deferral
- » Similar "peak shaving" operation of storage may also offset the buildout of new generation
- » Wholesale energy and ancillary services markets provide additional revenue
 - day-ahead energy market
 - frequency regulation
 - spinning & non-spinning reserve

- » Utilize Distribution approach from Use Case 2
- » Collect historical market energy and ancillary service market data from MISO
- » Prioritize storage operation for local and long-term planning needs first, system and operational scheduling opportunities later
- » Co-optimize for market service profitability

ESVT Model Prioritization

Use Case 3 - Results

- » Benefit stacking can provide a cost-effective outcome with simultaneous need for generation & distribution upgrades, and access to operational market benefits
- » Technical and regulatory challenges possible

- » Customer demand bill savings top priority
- » Potential to capture FITC when properly co-located and configured with a PV system
- » Market ancillary service value off-peak when customer isn't using it

- » Use foundational data sources from Use Case 1 & 3
- » Model customer bill savings-only operation
 - Don't allow utility or 3rd party control at those times
- » Simulate the residual value of additional market revenue when storage is idle
 - Took conservative approach with "shoulder hours" to ensure storage is available to recharge for customer need

ESVT Model Prioritization

Use Case 4 - Results

- » Market participation benefit stacking in conjunction with PV (and access to the FITC) significantly improves the economics as compared to the Customer Only Control case (Use Case #1)
- » Technical and regulatory challenges possible

- » Current tariffs in Minnesota do not show clear customer ownership benefit
- Cost-effective cases stacked multiple major benefits, including distribution deferral, system capacity, frequency regulation, and solar investment tax credit
 - Benefit stacking may have near-term technical and regulatory challenges
- » Existence of distribution deferral and system capacity is limited by "need", defined in utility IRP and distribution planning processes
 - Typically requires load growth
- » New storage "need" may emerge when new flexibility constraints arise from large penetrations of wind & solar
 - California is working to develop new tools and methods to plan for flexibility need and assess resources

Scope Limitations

- 1. Investigated a subset of possible battery storage technology configurations. Did NOT include:
 - Flow batteries
 - Flywheels
 - Traditional lead acid batteries
 - Modular compressed air energy storage (CAES)
- 2. Modeling was not exhaustive of all potential uses or scenarios
- 3. Excluded modeling of thermal energy storage (e.g. electric water heaters)
- 4. Excluded indirect or societal benefits (e.g. GHG reductions, job creation, improved grid operations, etc.)
- 5. Excluded conventional Uninterruptible Power Supply (UPS) case
- 6. Excluded secondary impacts of energy storage deployments to market prices (e.g. price suppression from competition)

Full Results in Minnesota Dept of Commerce Report

- » Over 50 cases investigated across the 4 use cases
- » Links to White Paper & Appendices:
 - <u>http://mn.gov/commerce/energy/images/MNStorageStu</u> <u>dy-2014-01-03-final.pdf</u>
 - http://mn.gov/commerce/energy/images/MNStorage-Study-Model-Inputs-2013-12-27.xls
 - <u>http://mn.gov/commerce/energy/images/MNStorage-</u> <u>Study-Model-Outputs-2013-12-27.xls</u>

Key Barriers

1. Grid Planning

- Utilities need a way to start looking for opportunities for energy storage integration
- Tools and methods need to be developed to enable utilities to do so

2. Deployment & Interconnection

- System operators should expand and clarify eligibility for retail interconnection with local distribution utilities
- Clarify MISO wholesale market interconnection procedures
- Utility liability management associated with utility-owned storage systems sited on customer premises

3. Monetization

- Through interconnection and market participation, storage system owners and operators may not be able to monetize all of the benefit streams that their storage systems provide
- This can include greater system benefits (i.e. distribution upgrade deferral) as well as market services

Incentives—Example of Monetization of Benefits

Distributed storage has value streams that cannot be directly monetized by the end user. Incentives help align current costs & benefits.

Incentive Program Design

- » Performance Based Incentives (\$/kWh)
- » Capacity Based Incentives (\$/kW)

Example: Self-Generation Incentive Program (SGIP) by the California Public Utility Commission (hybrid \$/kW and \$/kWh structure)

Conclusions & Recommendations

Key Conclusions

- 1. Energy storage has the potential to provide multiple sources of value for customers and utilities.
- 2. Utility controlled, customer sited storage in Minnesota has the potential to provide benefits to the grid greater than the system's cost.
- 3. Customer sited commercial and residential storage that relies upon customer tariffs were not able to achieve a benefit to cost greater than one.
- 4. Reliability (backup power) and voltage support service benefits of energy storage, while conceptually attractive, have not been found to be materially sufficient to significant impact the cost-effectiveness of energy storage.
- 5. Certain storage benefits can vary by utility type. Energy storage should be modeled according to the benefits within a specific utility and to best suit each utility's characteristics.

- 1. Conduct Further Studies
- 2. Establish Utility Planning Procedures
- 3. Establish Pilot Projects
- 4. Perform Financial Due Diligence
- 5. Establish Clear MISO Processes
- 6. Consider Alternative Rate Structures
- 7. Define System Ownership/Control
- 8. Further Evaluate Standalone Energy Storage Located at Distribution Substations

Questions?

Links to White Paper & Appendices:

- <u>http://mn.gov/commerce/energy/images/MNStorageStudy-2014-01-03-final.pdf</u>
- <u>http://mn.gov/commerce/energy/images/MNStorage-Study-Model-Inputs-2013-12-27.xls</u>
- <u>http://mn.gov/commerce/energy/images/MNStorage-Study-Model-Outputs-2013-12-27.xls</u>

2150 Allston Way, Suite 210 Berkeley, CA 94704 (510) 665-7811 www.strategen.com

Appendix

Appendix I: About Strategen & EPRI

Strategen Consulting Overview

We combine strategic thinking with deep industry expertise to create profitable businesses

A sampling of our clients:

Strategen Team

Chris Edgette, Senior Director

- » Extensive product development, engineering and field installation experience
- » Founded and managed the Commercial Projects Division for SolarCity. Previously served as SolarCity's Director of Field Engineering
- » Led Construction Management for PowerLight, directed worldwide installations and brought to market a successful rooftop solar system

Giovanni Damato, Senior Manager

- » Focused on developing the value proposition and strategic implications of Solar PV, Solar Thermal, and Advanced Energy Storage for a wide range of key stakeholders
- » Prior to Strategen, was Field Engineer for Granite Construction on Las Vegas Monorail project. Also founded home construction business and certified CA Class B General Contractor
- » MBA from Stanford GSB, BS in Civil Engineering from Cal Poly, San Luis Obispo

Amanda Coggins, Associate

- » Experienced in renewable energy technologies and policies, environmental sustainability, and energy efficiency
- » Prior to Strategen worked for a variety of engineering companies in Washington, D.C. supporting private sector and federal government clients, including the DOE and DOD
- » B.S. in Mechanical Engineering from Virginia Tech; M.S. in Environmental Systems Energy, Technology, and Policy from Humboldt State University; Certified LEED® Accredited Professional

Janice Lin, Founder and Managing Partner

- » Founded Strategen in 2005. Also co-founded the California Energy Storage Alliance in 2009
- » More than a decade of clean energy strategy and market development experience
- » Prior to Strategen, VP of Product Strategy and VP of Business Development at PowerLight. Former strategy consultant with Booz Allen and Hamilton
- » MBA from Stanford GSB, BS from Wharton at the University of Pennsylvania

Alex Ghenis, Senior Analyst

- » Focused on policy development for energy storage grid applications, public education through assorted media, and business positioning strategies
- » Prior to Strategen, worked on internal sustainability strategies for US EPA Region 9. Also has extensive disability rights and media experience, and is a regular contributor to *Life in Action* magazine.
- » MPP from the Goldman School of Public Policy at UC Berkeley, BA in Geography from UC Berkeley

- Independent, non-profit, collaborative research institute, with full spectrum industry coverage
 - o Nuclear
 - Generation
 - Power Delivery & Utilization
 - Environment & Renewables
- Major offices in Palo Alto, CA; Charlotte, NC; and Knoxville, TN

EPRI Energy Storage Program Mission

- Facilitate the development and implementation of storage options for the grid.
- Understanding storage technologies
- Identifying and calculating the impacts and value of storage
- Specification and testing of storage products
- Implementation and deployment of storage systems

EPRI Team

Ben Kaun, EPRI Project Lead

- Sr. Project Engineer, Energy Storage
- Energy Storage Program Analysis Lead
- 7 years energy storage experience; R&D, testing, and analysis
- M.S. Stanford in Management Science & Engineering
- B.S. Univ of Illinois in Systems Engineering

Stella Chen

Project Engineer, Energy Storage

- 2 years grid energy storage experience with EPRI
- EPRI Energy Storage Valuation Tool modeling expert
- B.S. Pomona College in Economics and Mathematics

Ram Narayanamurthy

Sr. Project Manager, Energy Efficiency

- Over 10 years efficiency experience, building modeling, thermal storage
- Developed Ice Energy Ice Bear thermal energy storage product
- M.S. Penn State MechE, B.S. Indian Institute of Technology MechE

Appendix II: Energy Storage Background

Energy Storage Technologies

Technologies Modeled

- » Lithium ion batteries
- » Advanced lead acid batteries
- » Sodium nickel chloride batteries

Potential Customer Sited Technologies Not Modeled

- » Flow batteries
- » Flywheels
- » Traditional lead acid batteries
- » Modular compressed air energy storage (CAES)

Energy storage is broad category including diverse technologies and benefits to the electric grid.

Identified Energy Storage Grid Services

Bulk Energy Services	Transmission Infrastructure Services
Electric Energy Time-Shift (Arbitrage)	Transmission Upgrade Deferral
Electric Supply Capacity	Transmission Congestion Relief
Ancillary Services	Distribution Infrastructure Services
Regulation	Distribution Upgrade Deferral
Spinning, Non-Spinning and Supplemental Reserves	Voltage Support
Voltage Support	Customer Energy Management Services
Black Start	Power Quality
Other Related Uses	Power Reliability
	Retail Electric Energy Time-Shift
	Demand Charge Management

Source: DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA. 2013.

Appendix III: Results Details

Category	Assumption	Value
Financial Inputs	Financial Model	Discounted Project Cash Flows
	Discount Rate	11.47%
	Inflation Rate	2%
	Fed Taxes	35%
	State Taxes	9.80%
Customer Site	Customer Type	Commercial (university)
Data	Tariff	Xcel GS-TOU (S)
	Tariff Escalation Rate	4%
	Peak Load (kW)	3012.18
	Average Load (kW)	1365.47
	Load Factor	45%

		Battery
Technology Cost / Performance	Nameplate Capacity (MW)	0.5
	Nameplate Duration (hr)	4
	Capital Cost (\$/kWh) -Start Yr Nominal	500
	Capital Cost (\$/kW) - Start Yr Nominal	2000
	Project Life (yr)	20
	Roundtrip Efficiency	83%
	Variable O&M (\$/kWh)	0.25
	Fixed O&M (\$/kW-yr)	15
	Replacement Cost (\$/kWh)	250

Customer Class	Customer Load	Tariff	Additional Sensitivity Considerations	Benefit-to-Cost Ratio
Commercial	Big Box Retail	Xcel GS (S)		0.54
	Big Box Retail	Xcel GS-TOU (S)		0.49
	School	Xcel GS (S)		0.56
	School*	Xcel GS (S)	Tax Benefits Excluded	0.17
	School	Xcel GS-TOU (S)		0.54
	University	Xcel GS-TOU (S)		0.66
	University	Xcel GS-TOU (S)	Reliability Benefit Included	0.68
	Hospital	Xcel GS-TOU (S)		0.58
	University	Connexus General Commercial		0.63
Residential	No Electric Space Heating	Xcel Residential – TOU		0.31
	Electric Space Heating	Xcel Residential – TOU		0.30

A benefit to cost ratio exceeding 1.0 indicates that the modeled benefits of energy storage exceed its costs over the lifetime of the installation, considering the time value of money and associated discounting of future year costs and benefits.

Base Load & Tariff Combination	PV System Assumptions	FITC & Tax Considerations	Benefit-to-Cost Ratio
University Load800 kWpXcel GS-TOU (S)20deg fixed tilt180deg azimuth		FITC: N/A Depreciation: 7yr MACRS Other Tax Benefits: Included	0.66
		FITC: 30% Depreciation: 5yr MACRS Other Tax Benefits: Included	0.88
		FITC: 30% Depreciation: 5yr MACRS Other Tax Benefits: Excluded	0.55

A benefit to cost ratio exceeding 1.0 indicates that the modeled benefits of energy storage exceed its costs over the lifetime of the installation, considering the time value of money and associated discounting of future year costs and benefits.

Net Present Value Over Project Life		
	Cost	Benefit
Capital Expenditure (Equity)	212,534	0
Financing Costs (Debt)	117,508	0
Operating Costs	33,140	0
Taxes (Refund or Paid)	0	111,525
Power Reliability	0	13,454
Retail TOU Energy Time-Shift	0	10,281
Retail Demand Charge Management	0	112,358
Total	363,182	247,618
B/C ratio		0.68

Use Case #2: Utility-Controlled for Distribution System Benefits

Category	Assumption	Value
Financial Inputs	Financial Model	Discounted Project Cash Flows
	Discount Rate	11.47%
	Inflation Rate	2%
	Fed Taxes	35%
	State Taxes	9.80%
Distribution	Base Year Reference	2012
	Distribution Load Peak (MW)	13.8
	Distribution Load Growth Rate	2%

		Battery (Utility Sited)
Technology Cost	Nameplate Capacity (MW)	1
/ Fenomiance	Nameplate Duration (hr)	4
	Capital Cost (\$/kWh) -Start Yr Nominal	500
	Capital Cost (\$/kW) - Start Yr Nominal	2000
	Project Life (yr)	20
	Roundtrip Efficiency	83%
	Variable O&M (\$/kWh)	0.25
	Fixed O&M (\$/kW-yr)	15
	Replacement Cost (\$/kWh)	250

Use Case #2: Utility-Controlled for Distribution System Benefits

Scenario	Load Growth	Upgrade Cost	Benefit-to- Cost Ratio
Commercial - 13.8kV	1%	\$176-384/kW (Xcel Provided)	1.01
Commercial - 13.8kV	2%	\$269/kW (90 th percentile)	0.83
Commercial - 13.8kV	1%	\$269/kWh (90 th percentile)	0.97

Base Load & Tariff	PV System	FITC & Tax Considerations	Benefit-to-Cost
Combination	Assumptions		Ratio
Commercial - 13.8kV	800 kWp DC	FITC: N/A	0.824
with Reliability	10-30deg fixed tilt	Depreciation: 7yr MACRS	
Benefits	150-210deg azimuth	Other Tax Benefits: Included	
		FITC: 30% Depreciation: 5yr MACRS Other Tax Benefits: Included	0.977

A benefit to cost ratio exceeding 1.0 indicates that the modeled benefits of energy storage exceed its costs over the lifetime of the installation, considering the time value of money and associated discounting of future year costs and benefits.

Use Case #2: Utility-Controlled for Distribution System Benefits

Net Present Value Over Project Life			
	Cost (\$)	Benefit (\$)	
Capital Expenditure	1,491,428	0	
Financing Costs	803,588	0	
Operating Costs	605,845	0	
Taxes (Refund or Paid)	0	513,526	
Electricity Sales	0	896,060	
Distribution Investment Deferral	0	979,608	
Totals	2,900,860	2,389,193	
Benefit to Cost Ratio		0.82	

Category	Assumption	Value
Financial Inputs	Financial Model	Discounted Project Cash Flows
	Discount Rate	11.47%
	Inflation Rate	2%
	Fed Taxes	35%
	State Taxes	9.80%
Distribution	Distribution Load Peak (MW)	13.8
	Distribution Load Growth Rate	2%

Category	Assumption	Value
System / Market	Base Year Reference	2012
	Real Fuel Escalation Rate	2%
	Energy & A/S Escalation Rate	3%
	Yr 1 capacity value (\$/kW-yr)	\$40
	Net CONE value (\$/kW-yr)	\$141
	Resource Balance Year	2018
	Mean RT Energy Price (\$/MWh)	31.03
	Mean DA Energy Price (\$/MWh)	32.01
	Mean Reg Price (\$/MW-hr)	9.81
	Mean Spin price (\$/MW-hr)	3.38
	Mean Non-Spin price (\$/MW-hr)	1.45

		Battery (Utility Sited)
Technology Cost / Performance	Nameplate Capacity (MW)	1
	Nameplate Duration (hr)	4
	Capital Cost (\$/kWh) -Start Yr Nominal	500
	Capital Cost (\$/kW) - Start Yr Nominal	2000
	Project Life (yr)	20
	Roundtrip Efficiency	83%
	Variable O&M (\$/kWh)	0.25
	Fixed O&M (\$/kW-yr)	15
	Replacement Cost (\$/kWh)	250

Use Case 3 - Benefit to Cost Ratio

Use Case #3: Utility-Controlled (Distribution + Market)

Distribution Circuit Load Type	Additional Sensitivity Considerations	Benefit-to-Cost Ratio
Commercial - 13.8kV		0.9991
Commercial - 13.8kV	Reliability Benefit Included	1.0025
Residential - 13.8kV		0.95
Commercial and Residential - 13.8kV		0.92

Base Load & Tariff Combination	PV System Assumptions	FITC & Tax Considerations	Benefit-to- Cost Ratio
Commercial - 13.8kV with Reliability Benefits	800 kWp 10-30deg fixed tilt 150-210deg azimuth	FITC: N/A Depreciation: 7yr MACRS Other Tax Benefits: Included	0.96
		FITC: 30% Depreciation: 5yr MACRS Other Tax Benefits: Included	1.15

A benefit to cost ratio exceeding 1.0 indicates that the modeled benefits of energy storage exceed its costs over the lifetime of the installation, considering the time value of money and associated discounting of future year costs and benefits.

Use Case 3 - Net Present Value

Net Present Value Over Project Life		
	Cost	Benefit
Capital Expenditure (Equity)	1,491,428	0
Financing Costs (Debt)	803,588	0
Operating Costs	526,226	0
Taxes (Refund or Paid)	0	147,596
Electricity Sales	0	441,520
Distribution Investment Deferral	0	979,608
System Capacity	0	825,712
Frequency Regulation	0	382,780
Synchronous Reserve	0	34,773
Non-Synchronous Reserve	0	0
Power Reliability	0	16,184
Total	2,821,241	2,828,173
Benefit to Cost Ratio		1.00

Category	Assumption	Value	
	Financial Model	Discounted Project Cash Flows	
Financial Inputs	Discount Rate	11.47%	
•	Inflation Rate	2%	
	Fed Taxes	35%	
	State Taxes	9.80%	
	Base Year Reference	2012	
System / Market	Real Fuel Escalation Rate	2%	
	Energy & A/S Escalation Rate	3%	
	Mean RT Energy Price (\$/MWh)	31.03	
	Mean DA Energy Price (\$/MWh)	32.01	
	Mean Reg Price (\$/MW-hr)	9.81	
	Mean Spin price (\$/MW-hr)	3.38	
	Mean Non-Spin price (\$/MW-hr)	1.45	

Category	Assumption	Value	
		Commercial	
	Customer Type	(university)	
Customer Site Data	Tariff Xcel GS-TO		
	Tariff Escalation Rate	4%	
	Peak Load (kW)	3012.18	
	Average Load (kW)	1365.47	
	Load Factor	45%	

		Battery (Utility Sited)
Technology Cost / Performance	Nameplate Capacity (MW)	1
	Nameplate Duration (hr)	4
	Capital Cost (\$/kWh) -Start Yr Nominal	500
	Capital Cost (\$/kW) - Start Yr Nominal	2000
	Project Life (yr)	20
	Roundtrip Efficiency	83%
	Variable O&M (\$/kWh)	0.25
	Fixed O&M (\$/kW-yr)	15
	Replacement Cost (\$/kWh)	250

Distribution Circuit Load Type	Additional Sensitivity Considerations	Benefit-to-Cost Ratio*
Run 12.X	done w/ capacity value	0.88
Run 12.X (No Capacity)	done w/o capacity value	0.43
Run 12.X (No Capacity) (2x P4P)	done w/ capacity value	0.65
Run 12.X (No Capacity) (2)	done w/o capacity value and 7yr + 14yr replacement schedule	0.42

A benefit to cost ratio exceeding 1.0 indicates that the modeled benefits of energy storage exceed its costs over the lifetime of the installation, considering the time value of money and associated discounting of future year costs and benefits.

Base Load & Tariff Combination	PV System Assumptions	FITC & Tax Considerations	Benefit-to-Cost Ratio
University Load Xcel GS-TOU (S)	800 kWp 20deg fixed tilt 180deg azimuth	FITC: 30% Depreciation: 5yr MACRS Other Tax Benefits: Included	0.91

A benefit to cost ratio exceeding 1.0 indicates that the modeled benefits of energy storage exceed its costs over the lifetime of the installation, considering the time value of money and associated discounting of future year costs and benefits.

Use Case #4: Shared Control (Customer Bill Savings + Aggregated Market Services)

Net Present Value Over Project Life				
	Cost	Benefit		
Capital Expenditure	1,491,428	0		
Financing Costs	803,588	0		
Operating Costs	299,273	0		
Investment Tax Credit	0	538,261		
Taxes (Refund or Paid)	0	693,007		
Electricity Sales	0	202,294		
Retail Demand Charge Management & TOU Energy Time-Shift	0	490,557		
Frequency Regulation	0	391,037		
Synchronous Reserve	0	50,448		
Non-Synchronous Reserve	0	914		
Total	2,594,288	2,366,519		
Benefit to Cost Ratio		0.91		

A benefit to cost ratio exceeding 1.0 indicates that the modeled benefits of energy storage exceed its costs over the lifetime of the installation, considering the time value of money and associated discounting of future year costs and benefits.

Summary of CPUC-Defined Use Cases for Energy Storage

	Bulk Peaker	
Transmission Connected	Ancillary Services Only	
	On-Site Traditional Generation	
	On-site VER	
	Distributed Peaker	
Distribution Connected	Distributed - Substation Level	
	Distribution Upgrade Deferral	
	Community Energy Storage	
Customer Sited Distributed	Demand Side Permanent Load Shifting	
	EV Charging	
	Customer Bill Management	
	Customer Bill Management + Ancillary Service Market Participation	
	Emergency Backup Only	
	Customer Sited Utility Controlled	

Benefit Streams

Use Case	1	L		2	3	3	4	
Ownership	Custo	omer	Uti	lity	Uti	lity	Custo	omer
Control	Custo	omer	Uti	lity	Uti	lity	Custor Util	mer + lity
Technology Combination	Storage Only	Storage + PV						
Customer Energy								
Customer Demand								
Customer Reliability								
Regulation								
Spinning Reserve								
Wholesale Energy								
Capacity							*****	
Distribution Upgrade Deferral Due To Load Growth								
Distribution Upgrade Deferral/Voltage Due to PV			****					
Color Key: M	odeling:		Proof of	Concept	***	Discuss	ion Only:	

Appendix IV: Barriers & Recommendations Details

Barriers Analysis

Use Case	Use Case #1: Customer-sited, customer controlled energy storage	Use Case #2: Utility-controlled, distribution-only use case	Use Case #3: Utility-controlled (Distribution + Market)	Use Case #4: Shared control (Customer bill savings + aggregated market services)
System need				
Cohesive regulatory framework				
Evolving markets				
RA value				
Cost-effectiveness				
analysis				
Cost recovery policies				
Cost transparency & price signals				
Commercial				
operating experience				
Interconnection processes				
Tax Benefit for PV- connected systems				
MISO Participation				
Barrier Intens	ity: Low:	Mediu	n:	High:

Accessing the key benefits with a single storage resource requires a certain energy storage dispatch (i.e. charging and discharging) behavior and project structuring, as outlined below:

- Distribution upgrade deferral benefits are dependent upon the need for an upgrade of a local distribution asset such as a substation or transformer and ability to defer it with storage, and thus are highly site and time-specific. The highest deferral values are associated with low load growth rates of (~1%/yr), which is consistent with the Minnesota average load growth rate.
- 2. Participation in frequency regulation requires bidding into the Midcontinent Independent System Operator (MISO) frequency regulation market. Capturing this benefit would require additional creation of MISO rules for customer-sited storage system market participation.
- 3. The system capacity benefit is based around supporting a utility's long-term Resource Adequacy requirements. Availability of this benefit is based on regional need at specific times. Additional tools and methods may be required to incorporate energy storage into the integrated resource planning (IRP) process that defines the need and potential solutions.
- 4. To capture the Federal Investment Tax Credit (FITC) and accelerated MACRS depreciation, the storage system must be linked to a solar PV system and receive 75% or more of its charging energy from solar. The utility must also be able to monetize the Investment Tax Credit and accelerated MACRS depreciation value, either directly or through a third party ownership structure.

Energy storage has the potential to provide multiple sources of value for customers and utilities

a. **Demand Charges** – The majority of energy storage benefit for customers is derived from overall reduction in a customer's demand. Demand charges of \$15 - \$20/kW per month are generally needed to provide sufficient value to the customer to compensate for the cost of the energy storage system.

b. **Time of Use (TOU) Energy Charges** – This benefit accrues from buying energy at a low price and selling at a higher price. Modeling showed that this benefit was not significant. In many residential tariffs, there is not TOU energy charge on the bill, so this benefit cannot be realized.

c. **Federal Investment Tax Credit** – This tax credit can be applied to an energy storage system that obtains 75% or more of its charging energy from an integrated photovoltaic solar system. It requires that the system be co-located with on-site solar. Commercial end customers may be better positioned to take advantage this benefit than utilities.

d. Accelerated MACRS depreciation - Like the FITC, this benefit only applies to storage systems co-located with solar PV. Such systems can be depreciated over 5 years instead of 7, resulting in tax avoidance and time value of money benefits to the storage owner.

e. It is worth noting that demand response activities could provide additional value to customer operated systems, where load is reduced in response to a utility need for system capacity. This value was not quantified in the model.

f. Additionally, the value of customer backup power (enhanced reliability) could be obtained if energy storage has the capability to operate as an uninterruptible power supply. While the value of this service generally appears to be low, there are certain instances and customers where this value could be significantly higher, particularly with critical loads, such as hospitals and data centers. Appropriate configuration for the energy storage and the load are required to provide this functionality.

Utility controlled, customer sited storage in Minnesota has the potential to provide benefits to the grid greater than the system's cost if three of the four benefits are achieved

Opportunities for Energy Storage Projects in Minnesota

In general, customer controlled storage has the greatest value for customers on utility tariffs with high demand charges and access to market benefits like frequency regulation. Customer-sited, utility controlled storage systems provide the greatest benefits for utilities that are able to monetize the following key benefits identified in the modeled cases:

- » Distribution upgrade deferral: utilities that need to procure high cost distribution upgrades, particularly substation transformers, on feeders with low load growth will gain the greatest value from this storage capability.
- » Regulation value: utilities must be capable of capturing the value of regulation capabilities provided by energy storage. The value and effect of market participation with storage will heavily depend upon the individual utility's overall MISO participation strategy.
- » Capacity value: the value of capacity to a utility depends upon its need to procure local and/or system generation capacity at that time in its integrated resource planning (IRP) process.
- » Tax Benefits including federal investment tax (FITC) credit and accelerated depreciation (MACRS): different utilities will have varying degrees to which they can capture the tax benefits identified in the study. For utilities that cannot capture the tax benefits directly, project structures incorporating a third party may allow those utilities to capture a significant portion of the benefits

- 1. Based upon the results, we recommend that utility controlled customer sited storage and distribution upgrade deferral be included in Minnesota's Renewable Energy Integration and Transmission Study (Docket No. E-999/CI-13-486).
- 2. We recommend establishing planning procedures to support utilities in finding opportunities to install energy storage together with solar PV to defer high cost distribution upgrades. These procedures should allow utility controlled energy storage projects to be accepted and rate based if the cost-effectiveness exceeds that of the traditional infrastructure, and could be considered as part of CIP resource procurement.
- 3. We recommend establishing energy storage pilot projects based around the key benefits identified in the study. Pilot projects will provide demonstrations of the value proposition of energy storage with valuable lessons learned and operational track record for future commercial consideration of energy storage as applied in the modeling.
- 4. We recommend that utilities conduct financial due diligence to verify that they would be able to capture the Federal Investment Tax Credit for combined energy storage and solar PV projects. Likewise, it is important to validate that customer sited utility controlled systems would be able to provide frequency regulation to MISO.
- 5. We would encourage MISO to establish clear processes for load and customer side and utility owned resources to participate in MISO markets.
- 6. Utilities might consider rate structures and/or demand response programs that take in account the system value that might be provided by customer sited energy storage. If those rate structures were to change, customers might consider dual use for their UPS.
- 7. In order to provide the greatest benefit from customer-sited energy storage, utilities should define the control of these systems. Multiple options are possible for procurement, including rate based recovery or third party ownership. Incentives for energy storage could apply if the key benefits cannot be directly monetized, or if additional societal and/or system benefits could be shown to apply to energy storage assets.
- 8. The study results indicate a potentially positive business case for standalone energy storage located at distribution substations in order to provide upgrade deferral and regulation value. We recommend additional due diligence for this case.

Appendix V: Minnesota Electric Grid Background Data

The Minnesota electric grid is operated by the Midcontinent Independent System Operator (MISO), one of nine ISO/RTOs operating in the United States.

Minnesota Electric Grid Background Information (cont.)

Minnesota Electric Utility Service Areas

Investor Owned Utilities (IOUs)

- » Xcel Energy Northern States Power Company
- » Allete Minnesota Power
- » Alliant Energy Interstate power
- » Northwestern Wisconsin Electric
- » Otter Tail Power Company

Cooperative Utilities (Co-op)

- » 45 distribution
- » 6 generation and transmission

125 Municipal Utilities (Munis)

