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Abstract 
Solar photovoltaics (PV) are providing an ever increasing proportion of U.S. energy supply. In 
part, this is because the costs of PV modules and other hardware have declined rapidly over the 
last decade, primarily due to technology improvements and manufacturing scale. Non-hardware 
“soft” costs, on the other hand, including permitting and other local regulatory processes, have 
not been falling as rapidly, and now comprise the majority of total costs for residential PV 
systems. This paper statistically isolates the impacts of city-level permitting and other local 
regulatory processes on residential PV prices in the U.S. by combining data from two “scoring” 
mechanisms that independently capture local regulatory process efficiency with the largest 
dataset of installed PV prices in the United States. Our dataset also utilizes a rich set of 
installation level control variables that allows us to better explain PV price variations in general. 
Based on regression analysis, we find that variations among and improvements in local 
regulatory processes can meaningfully affect residential PV installation prices. More specifically, 
we find that variations in local permitting procedures can lead to differences in average 
residential PV prices of approximately $0.18/W between the jurisdictions with the most-onerous 
and most-favorable permitting procedures. For a typical 5-kW residential PV installation, this 
equates to a $700 (2.2%) difference in system costs between jurisdictions with scores in the 
middle 90 percent of the range (i.e., 5th percentile to 95th percentile). Moreover, when 
considering variations not only in permitting practices, but also in other local regulatory 
procedures, price differences grow to $0.64-0.93/W between the most-onerous and most-
favorable jurisdictions. For a typical 5-kW residential PV installation, these results correspond to 
a price impact of at least $2500 (8%) between jurisdictions with scores in the middle 90 percent 
of the range. These results highlight the magnitude of cost reduction that might be expected from 
streamlining local regulatory regimes.  

Introduction 
Though still a minor share of total electricity supply, solar photovoltaics (PV) have deployed at a 
rapid pace in recent years. In 2013, 38 GW of PV was installed globally, up from just 1.1 GW 
installed ten years earlier in 2004 (EPIA 2014). The United States, as the world’s third largest 
market in 2013, installed 4.8 GW, with significant new capacity in smaller household and larger 
commercial systems as well as in utility-scale applications (SEIA/GTM 2014). This growth has 
been spurred by both government policy and system cost reductions (Shrimali and Jenner 2013), 
with continued growth expected over the near- and longer-term, especially within the context of 
combatting global climate change (Baker et al. 2013, Edenhofer et al. 2011, IPCC 2014). 

For this growth to continue, given recent changes in the cost structure of PV systems, heightened 
emphasis is now being placed on reducing non-hardware “soft” costs. In particular, overall 
system-level PV cost reductions have been substantial in recent years (Barbose et al. 2014, 
Bolinger and Weaver 2013, Bazilian el al. 2013, Branker et al. 2011, Candelise et al. 2013, 
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Hernandez-Moro and Martinez-Duart 2013). But, in the United States at least, these reductions 
have been largely driven by hardware—specifically, a steep decline in the price of PV modules. 
Though learning-based reductions in non-hardware soft costs are apparent on a longer term basis 
(Schaeffer et al. 2004), soft costs have been somewhat stagnant in the United States, at least 
through 2012 (Barbose et al. 2014). As a result, for typical residential systems, soft costs 
represented 64% of total system costs in the United States in 2012 (Friedman et al. 2013). 
Moreover, these high soft costs are at least somewhat unique, as average residential PV prices in 
the United States remain well above those witnessed in many other major global PV markets 
(Barbose et al. 2013). Significant additional reductions in total installed costs, likely a pre-
condition for continued rapid market growth, will therefore necessitate substantial progress in 
reducing soft costs. 

This paper focuses on one soft-cost element that has received a considerable amount of recent 
attention in the United States as being partly responsible for the persistently high PV prices: local 
regulatory processes, including permitting, inspection, and interconnection. A typical local 
regulatory process for PV may involve multiple local government departmental reviews (e.g., 
building, electrical, mechanical, plumbing, fire, structural, zoning, and esthetic), a permitting fee 
and a site inspection, as well as interconnection-based reviews by the local utility. These 
processes are partially directed by state policies, but local governments and utilities are typically 
given wide latitude in how they are administered. Though the resulting procedures can help 
protect against unscrupulous or unskilled PV installers, the diversity of documentation 
requirements, application procedures, inspection processes, and fees complicates the PV market: 
approximately 18,000 different local “authorities having jurisdiction” exist in the United States, 
many of which have unique requirements.1 

A variety of efforts are underway to not only document the procedures required in various 
jurisdictions, but also to streamline those procedures in order to reduce PV costs, especially in 
jurisdictions where procedures are particularly onerous. The DOE’s Rooftop Solar Challenge 
(RSC), for example, has funded teams of local and state governments along with utilities, 
installers, nongovernmental organizations, and others to work to reduce local administrative 
barriers to PV.2 As part of this effort, the DOE has developed a scoring protocol for cities, and 
applied that system on two occasions. Vote Solar, meanwhile, created “Project Permit,” which 
includes an online summary of city-level permitting requirements and scores cities based on 
those processes.3 The Solar America Board for Codes and Standards has developed an expedited 
permit process for PV (Brooks 2012), while Clean Power Finance has created an online database 
that compiles permitting requirements from around the nation and that is used as the data source 

1 Also worth noting is that these 18,000 authorities oversee roughly 42,000 unincorporated communities, some of 
which have their own requirements. 
2 See: http://www.eere.energy.gov/solarchallenge/  
3 See: http://projectpermit.org/  
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for Vote Solar’s Project Permit.4 Partly in response to these myriad efforts, a number of states 
have sought to streamline their local procedures (Stanfield et al. 2012). 

In this paper we statistically analyze the impact of these local, often city-level5 processes on the 
reported prices of residential PV systems. We utilize two unique city-level “scores” of these 
processes—one created by the U.S. Department of Energy (DOE) through its RSC program and 
one by the non-profit organization Vote Solar through its Project Permit initiative. Our work 
leverages the sizable dataset of system-level PV prices managed by Lawrence Berkeley National 
Laboratory, and is part of a larger body of research conducted by LBNL, Yale University, 
University of Wisconsin, and University of Texas at Austin that is exploring, more broadly, the 
drivers for PV price variability in the United States.   

Our analysis helps to answer two key questions. First, to what degree are local regulatory 
processes in the United States impacting residential PV prices? Second, do the two different 
scoring mechanisms capture the idiosyncrasies of these local processes? Answers to these 
questions can highlight the magnitude of cost reduction that might be expected from streamlining 
local regulatory regimes and, secondarily, may help refine city-level scoring methods.  

We build on existing literature that has assessed these costs, and seek to inform efforts that have 
sought to reduce them. Friedman et al. (2013) find that the national average cost of permitting, 
inspection and interconnection (PII) in the United States for residential systems in 2012 was 
$0.19/W ($0.10/W for labor and $0.09/W for the permit fee). Seel et al. (2014) compare average 
PII costs in Germany and the United States for 2011, finding that German costs (at just $0.03/W) 
were substantially lower than in the United States, on average. Ardani et al. (2014) identify a 
roadmap by which U.S. PII costs might approach German levels by 2020. Earlier, SunRun 
(2011) found that local permitting and inspection could cost $0.50/W in total for a typical 
residential installation. Tong (2012) estimated that the labor costs association with permitting 
averaged $0.11/W, with 36% of installers limiting or avoiding certain jurisdictions due to 
cumbersome processes. Dong and Wiser (2013) evaluate the heterogeneity in city-level 
permitting practices, finding that cities in California with the most-favorable permitting practices 
had PV prices that were $0.27–$0.77/W lower than cities with the most-onerous practices.  

Overall, this previous work suggests that local regulatory processes can impact PV prices, both 
directly through administrative labor and fees imposed on PV installers, as well as indirectly in 
the form of economic rents that accrue to installers as a result of barriers to entry into local 
markets created by onerous processes. It is also evident that the impact of local regulatory 
procedures on the PV market exceeds the impact on PV prices alone, as these procedures may 

4 See: http://solarpermit.org/  
5 Though we colloquially refer to “city-level” processes throughout much of this paper, in fact local procedures 
impacting PV are sometimes set by the county or by unincorporated jurisdictions.   
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cause delays in the completion of PV projects (Dong and Wiser 2013) and can also limit 
participation in the market by both installers and potential PV customers (Tong 2012). At the 
same time, there remains some uncertainty on the size of the average price impact and, more 
significantly, on the heterogeneity of those price effects across jurisdictions. 

Our work seeks to tackle this latter uncertainty. In so doing, it builds on Dong and Wiser (2013), 
which conducted an econometric analysis of residential PV systems in California to explore the 
relationship between DOE RSC residential permitting scores and PV prices. We extend that 
work in several respects. First, we evaluate the impact of local processes using two third-party 
jurisdiction-level scoring systems from the RSC and Vote Solar. Second, we extend the work 
both geographically and temporally. Whereas Dong and Wiser (2013) focus on RSC scores and 
PV installations in California in 2011 (44 cities, 3,000 PV installations), the present analysis uses 
RSC scores and PV installations for both 2011 and 2012, and we evaluate the impact of those 
scores across 13,904 PV systems within 73 cities and 6 states. The Vote Solar scores allow us to 
assess a much larger number of PV systems (43,551), cities (603) and states (11), adding to the 
richness of our dataset. Third, Dong and Wiser (2013) focus solely on the “residential permitting 
score” from the RSC, which is just one aspect of the total score that the DOE assigns to 
participating cities. In the present analysis, in order to capture local procedures that go beyond 
permitting, we use the city-level “total score” from the RSC. In so doing, we capture local 
variations in interconnection procedures, planning and zoning, financing options, and net 
metering rules, in addition to permitting. Fourth, and related, we are then able to loosely contrast 
the RSC results with those that focus on the Vote Solar scores, which only cover permitting. 
Because the Vote Solar scoring mechanism emphasizes a smaller subset of the issues covered by 
the RSC scores, an analysis of both programs can lead to better understanding of how local 
procedures impact PV prices. Finally, while Dong and Wiser (2013) statistically controlled for a 
variety of other potential drivers of PV prices, the present analysis includes an even greater 
number of diverse control variables, reducing the chance of statistical bias and improving 
estimates of the impact of local regulatory procedures.  

The remainder of the paper is structured as follows. In section 2, we discuss the data used to 
conduct our analysis. In section 3, we then summarize the statistical models used. Section 4 
provides the key results of our analysis, while section 5 offers conclusions. 

Data  
This paper combines data from two independent city-level scores of local regulatory processes 
for PV with data on PV prices, systems and market characteristics from the largest dataset of PV 
installations in the United States. Below we first discuss the PV price and other data used in our 
analysis, and then we turn to a discussion of the two scoring methods. 
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PV System Prices and Other Data 
This work leverages the largest dataset of PV system prices worldwide, used in Lawrence 
Berkeley National Laboratory’s annual Tracking the Sun (TTS) report series (e.g., TTS VI: 
Barbose et al. 2013). The TTS VI data includes reported PV system prices for over 200,000 PV 
installations, representing 72% of cumulative grid-connected PV capacity in the United States as 
of year-end 2012. The data were collected from 47 PV incentive programs in 29 states, and were 
subsequently cleaned and standardized to remove potential errors in the data.6 In addition to 
system prices, the data also contain a variety of information about the PV installations—
including date of installation; system size; geographical location; whether the system is 
residential, commercial, or other; and its technology type (module and inverter manufacturer and 
model, ground mounted vs. roof-mounted systems, new construction vs. retrofit systems). After 
cleaning the module and inverter data, additional information on the technology used in each PV 
installation was inferred, including whether the module is building integrated PV (vs. rack-
mounted), thin-film PV (vs. crystalline), Chinese made (vs. non-Chinese made), and whether the 
PV system uses micro-inverters (vs. central or string inverters). To maximize sample size, certain 
assumptions were made for some PV system characteristic variables when their value was 
unknown for specific PV systems. Namely, when the variables are unknown, systems are 
assumed to be retrofit (rather than new construction), crystalline silicon (rather than thin film), or 
rack mounted (rather than building integrated PV). 

Various screens were applied to select the data used for the analysis presented in this paper. A 
key step was to isolate PV systems with locations and installation dates that coincided with the 
Vote Solar and RSC scores, as described in this section below. As with the underlying TTS VI 
dataset, outliers were removed by only keeping data for systems with installed prices between 
$1.5/W and $20/W,7 as well as excluding PV systems that are ground mounted, self-installed, or 
with battery backup. As the focus of this study is on residential systems, we restricted the sample 
to PV systems between 1 and 10 kW that were identified as either “residential” or “unknown” for 
customer segment. Customer-owned PV systems are included in our analysis. However, a large 
fraction of the residential PV systems installed in the United States in recent years are owned by 
third parties, with the host customer either leasing or purchasing power from such systems. In 
these cases, as with the underlying TTS VI dataset, PV systems with reported prices identified as 
likely to represent an “appraised value” rather than a transaction price paid to the installer were 
removed from the sample. These are third-party owned (TPO) systems installed by integrated 
companies that provide both system financing as well as PV system installation, and the reported 
appraised-value pricing in these instances does not reasonably approximate the actual cost of 
individual installations. On the other hand, systems that are TPO but not installed by integrated 

6 For details on the standardization and cleaning process, refer to Barbose et al. (2013). 
7 All price data (in $/W) were converted to real 2012 dollars, and are presented in terms of rated module power 
output under standard test conditions (DC-STC). 
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companies were retained in the dataset, as the reported price in these instances reflect the 
transaction price between the third-party company and the local installer.8  

In addition to the existing data within the TTS VI dataset, we constructed additional data fields 
to be used as control variables in the analysis, leveraging the larger LBNL project mentioned 
earlier.9 Using the zip code data for each PV system installation and data from the U.S. Census 
Bureau (2014), a number of demographic and socioeconomic characteristics were associated 
with each PV installation, including household education level, average income and average 
housing prices in the given zip code, and average household density in the given county. We 
derived a county-level composite labor-cost index from average administrative, electrician, and 
roofing wages using data from the Bureau of Labor Statistics. Cleaning the installer names for 
each PV installation in our dataset also enabled us to calculate a number of variables that reflect 
installer experience and competition within counties. These include a discounted county-level 
installer experience variable, a discounted county-level aggregate experience variable, a county-
level installer density variable, a county-level installer market share variable, and a county-level 
Herfindahl–Hirschman Index (HHI) that measures the degree of concentration of installers in 
each local PV market (see also Table 5). Finally, we constructed a variable reflecting the net 
present value of the economic benefits of each PV system, including utility bill savings, based on 
electricity rates and insolation levels (for net-metered systems) as well as the expected present 
value of any performance-based incentives, feed-in tariffs, solar renewable energy certificate 
(SREC) payments, federal and state investment tax credits, and cash rebates. 

Figure 1 shows the resulting distribution of PV system prices, focusing just on the data used for 
the Vote Solar and the RSC analysis; the figure therefore contains data on PV systems installed 
in 2011 and 2012 in a subset of states and cities, as described further below. The figure illustrates 
the significant variation in residential solar PV prices: within our analysis dataset, average prices 
are roughly $6/W, but the overall distribution of prices is wide. The degree to which some of this 
variation may be attributed to differences in permitting practices and other local regulations is 
the central question addressed by the present study.  

8 See Barbose et al. (2013) for additional details on price reporting for TPO systems. 
9 Further details on these variables and their precise construction, beyond what is provided below and in Table 5, can 
be found in a forthcoming LBNL report that explores, more broadly, the drivers for PV price variability.   
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Figure 1. Distribution of PV System Prices in the Final Dataset for the Vote Solar and RSC Analysis 

 
Scores of Local Regulatory Processes 
Our analysis relies on two different sets of scores for local regulatory processes applied to PV 
installations: one by the non-profit organization Vote Solar (VS) Initiative and one by the U.S. 
Department of Energy through its RSC program. 

The Vote Solar Initiative’s Project Permit campaign provided the first set of regulatory process 
scores. Vote Solar worked with the Interstate Renewable Energy Council to develop a set of best 
practices for municipal permitting to be used for scoring local jurisdictions. As indicated in 
Table 1, seven of these best practices were scored and weighted to determine jurisdictional 
performance in solar permitting [Best (7-10), Good (2.5-7), Worst (0-2.5)]. A total of 915 
jurisdictions in the United States have been scored. The data used by Vote Solar to determine 
scores was obtained from Clean Power Finance’s National Permitting Database 
(SolarPermit.org), which is funded by the DOE and uses a crowdsourcing methodology to 
populate and verify information on municipal permitting practices and is continuously updated 
by a community of over 1,300 users. 
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Table 1. Vote Solar Project Permit Best Practices and Scoring Methodology 

# SolarPermit.org Question Scoring Metric Score = Best 
Practice 

Score = Not 
Best Practice Weight Final 

Score 

1 Is there a solar permitting 
checklist 

Posts requirements 
online? yes no 0.05 0.5 

2 Online permit applications Allows online 
processing? available no 0.05 0.5 

3 Is there an over-the-
counter permit option Fast turn-around time? yes no 0.25 2.5 

3 Average turn-around time 
for residential permit Fast turn-around time? < 3 days > 3 days 0.15 1.5 

4 Permit Fee = “Flat Rate” 
PLUS “$400 or less” 

Reasonable permitting 
fees? ≤ $400 no 0.25 2.5 

5 Licensing for solar 
contractors 

No community specific 
licenses needed? 

Additional 
licensing not 

required 

Additional 
licensing 
required 

0.05 0.5 

6 Time window for a 
scheduled inspection 

Offers a narrow 
inspection appointment 
window? 

≤ 2 hours > 2 hours 0.1 1 

7 Number of inspections 
required 

Eliminates excessive 
inspections? 1 inspection > 1 inspection 0.1 1 

 
   Total Points: 10 

Source: http://projectpermit.org/2013/02/06/best-practices/; accessed July 2014 

The DOE’s Rooftop Solar Challenge program supplied the second set of local regulatory process 
scores. The RSC is a competitively-awarded funding opportunity created by the U.S. Department 
of Energy in 2011 with the goal of eliminating market barriers and reducing soft costs via local 
and state-level initiatives. The RSC included a quantitative tracking of participants’ progress 
across a variety of "action areas" that define the local regulatory environment for PV, including 
local permitting and interconnection processes, interconnection and net metering standards, 
financing options, and planning and zoning (see Table 2). In particular, the 22 participating 
teams in the RSC program, representing approximately 50 million people and 154 jurisdictions, 
provided DOE with responses to a multiple-choice questionnaire regarding the status of the local 
regulatory environment for PV in each participating jurisdiction. These responses were converted 
to numerical scores and weighted within each action area, according to the impact that local 
jurisdictions were likely to have in the context of the award funding (see Table 2).10 Participants 
were then given one year to enact their strategies for enhancing local solar markets. At the end of 
the year, participants were once again scored using the same questionnaire to obtain a 
comparison against initial baseline scores and measure local solar market improvements.  

 

10 Participants were not made aware of the particular weighting for each response in order to avoid potential score 
manipulation.  
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Table 2. RSC Solar Market Maturity Model and Scoring Methodology 

ACTION AREA POINTS 
Permitting Process 460 
  Application 110 
  Information Access 60 
  Process Time 110 
  Fee 30 
  Model Process 30 
  Inspection 80 
  Communication w/ Utility 40 
Interconnection Process 110 
  Application 40 
  Information Access 20 
  Process Time 20 
  Inspection 30 
    

 Interconnection Standard 100 
Net Metering Standard 100 
    

 Financing Options 150 

  
Third Party Ownership (or 
equivalent) 90 

  Direct Finance Options 25 
  Community Solar 15 
  Other 20 
    

 Planning and Zoning 80 
  Solar Rights and Access 54 
  Zoning 20 
  New Construction 6 
TOTAL POINTS POSSIBLE 1000 

 
As indicated earlier and as suggested by the discussion above, these two sets of scores differ in 
their scope. In particular, the RSC scores encompass a substantially larger array of indicators, 
including those pertaining to state-level policies and financing options, whereas the Vote Solar 
scores are narrowly focused on a core set of municipal solar permitting best practices. 
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Final Dataset for Analysis 
Though Vote Solar scored 915 cities, because of limited coverage in the TTS dataset, 603 cities 
remain within 11 states after matching the Vote Solar data to the TTS data. The Vote Solar 
scores used here reflect permitting processes in 2013. To best match Vote Solar scores with TTS 
data, which only extends through 2012, we assume that PV installations in 2012 are reasonably 
reflective of permitting procedures that existed in 2013.11 In total, 43,551 residential PV (≤ 10 
kW) installations match to the Vote Solar data—representing more than 50% of the residential 
PV systems installed in the United States in 2012 (SEIA/GTM 2013). Vote Solar scores range 
from 0 (onerous permitting processes) to 8.5 (efficient permitting processes), with an average of 
3.1 (Figure 2). Table 3 shows state-level summary statistics for the Vote Solar scores and 
matched TTS PV prices. The full dataset is dominated by systems and cities in California, but 
also has a significant number of observations in a geographically diverse set of additional states.  

Table 3. Vote Solar Matched Summary Statistics 

State City Score 
(mean) 

Average Price  
($/watt) 

Number of Matched 
VS Cities 

Number of 
Installations 

AR 0.0 7.07 1 3 
AZ 3.2 5.24 40 5654 
CA 3.4 6.32 318 32472 
CT 2.9 6.53 8 52 
MA 1.5 5.78 37 533 
NJ 1.5 5.61 72 1662 

NM 0.8 6.01 3 171 
NY 2.5 6.33 54 542 
OR 4.0 5.82 13 963 
PA 1.5 5.89 45 550 
TX 0.8 4.71 12 949 

Total     603 43551 
 
The DOE’s RSC program scored 154 jurisdictions; after matching with the TTS installation data, 
however, 73 cities in six states remain for analysis. Two sets of scores are available: the baseline 
scores from early 2011 and the final scores from late 2012. To best match these scoring time 
frames, we match PV installations in 2011 with the 2011 baseline RSC scores, and we match PV 
installations from May through December of 2012 with the 2012 final RSC scores. In total, 
13,904 residential PV (≤ 10 kW) installations match the RSC scoring data. RSC scores range 
from 228 (more-onerous local procedures) to 914 (more-favorable local procedures), with an 
average of 615 in 2011 and 751 in 2012 (see Figure 2, which collectively summarizes the scores 

11 There may be some limited bias in this temporal match as some jurisdictions will have streamlined their 
permitting procedures between 2012 and 2013. 

 
10 

 
 

                                                 



from both time periods). Table 4 shows state-level summary statistics for the RSC scores and 
matched TTS PV prices. The RSC dataset is also dominated by California, but with significant 
numbers of systems in Arizona and Texas.  

Table 4. Rooftop Solar Challenge Matched Summary Statistics  

State Jurisdiction 
Score (mean) 

Average Price  
($/watt) 

Number of Matched 
RSC Jurisdictions 

Number of 
Installations 

AZ 580 5.11 8 1543 
CA 711 6.39 47 11487 
MA 657 5.45 5 95 
NY 557 9.07 1 5 
PA 393 6.14 11 53 
TX 669 4.28 1 721 

Total 
  

73 13904 

 

 
Figure 2. Distribution of Vote Solar and RSC Scores by PV Systems in the Matched Datasets 
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Methodology   
We seek to evaluate the influence of local permitting and regulatory processes on installed 
residential solar PV prices ($/W). The main identifying assumption is that the scoring 
mechanism—whether RSC or Vote Solar—captures the exogenous variation in local regulatory 
processes. Our primary regression specification is captured by equation (1) below.  

𝑃𝑖𝑗𝑡 = 𝛼 + 𝛽1𝑆𝑘𝑗𝑡 + 𝛽2𝑋𝑖𝑗𝑡 + 𝛽3𝑍𝑗𝑡 + 𝛽4𝐷𝑖𝑗𝑡 + 𝛾𝑚𝑡 + 𝜃𝑗 + ε𝑖𝑡                                (1) 

This primary specification regresses the installation price per watt for PV system i, in jurisdiction 
j, at time t (Pijt) on jurisdiction j’s score at time t (Sjt

k for k in (VS, RSC)). Vote Solar scored each 
jurisdiction once while the RSC program scored each jurisdiction twice. Thus, we have a single 
cross section of data from the Vote Solar program while we have a two-year panel dataset for the 
RSC program. A large number of control variables are also included.  

• First, a set of variables comprising system-level characteristics (Dijt) are included: PV 
system size; PV system size squared; and dummy variables indicating whether the system 
was installed as part of a new home, uses building-integrated PV (BIPV), uses thin film 
modules, uses modules manufactured in China, employs micro-inverters, and is third 
party owned (TPO).  

• Second, a set of demographic and socio-economic controls (Zjt) are included: local 
average education levels; housing prices; and household income.  

• Third, a set of market characteristics (Xijs) are included: household density; a labor cost 
index; individual installer experience at the county level; aggregate installer experience; 
measures of installer competition and market power; and an estimate of the present value 
of economic benefits of PV to the customer.  

• Fourth, a linear time trend in months (𝑚𝑡) is employed to control for the overall decrease 
in PV prices over the study period (2011-2012). 

• Fifth, jurisdiction- or state-level fixed effects (θj) are included in a subset of the models.  

A mean zero i.i.d. normally distributed error term (εit) is included. Huber-White robust standard 
errors are reported to limit the impacts of heteroskedasticity. Our primary regression outputs do 
not report clustered standard errors, but the results of clustering at the jurisdiction and state level 
are discussed later. 

Each of the control variables is described in Table 5, with the expected signs listed. Summary 
statistics for these control variables, as well as for PV prices and RSC and Vote Solar scores, are 
provided in Appendix A.  
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Table 5. Control Variable Definitions and Expected Direction of Impacts 

Variable  Definition Expected Sign 

system size PV system size in watts Negative 

system size squared Square term of system size Positive 

new construction PV installed in new home construction (vs. retrofit on existing home) Negative 

BIPV Building-integrated PV system (vs. not) Positive 

thin-film Thin-film PV module (vs. crystalline silicon) Either 

China China-made PV module (vs. not) Negative 

micro-inverter PV system uses micro-inverter (vs. not) Positive 

TPO Third-party owned PV system (vs. not) Either 

education level Percent of individuals in zip code with bachelor's education or more Negative 

mean house value Mean home value by zip code Positive 

mean income Mean household income by zip code Positive 

household density Total number of owner-occupied households per square mile within 
county Negative 

labor cost index Composite labor cost index in county Positive 

installer experience County-level installation experience by installer, measured as the 
discounted cumulative number of PV systems installed  Negative 

aggregate experience County-level aggregate installation experience by all installers, measured 
as the discounted cumulative number of PV systems installed Negative 

installer density Total number of installers within county in last six month per household Negative 

installer market share Market share by installer at county-level within last year Either 

HHI Herfindahl - Hirschman Index for county-level PV market (installer 
concentration indicator)   Positive 

value of solar Present value of customer-economic benefits of a PV system  Positive 

time Linear time trend (also tested other specifications, see below) Negative 

 
Ultimately, we present five regression specifications for the RSC program and three for the Vote 
Solar program. Our primary specifications use ordinary least squares with jurisdiction-level 
(RSC) and state-level (VS and RSC) fixed effects to assess the impact of local permitting and 
other regulatory processes on PV prices.12 We also include specifications that include no fixed 
effects for both scoring programs. Additionally, considering that the panel data is highly 
unbalanced, with far greater numbers of PV installations in some jurisdictions than in others, we 
show some regression results with sample weighting (i.e., pweight). The purpose of sample 

12 Because the Vote Solar program scored each jurisdiction only once, we do not have jurisdiction level variation in 
the Vote Solar score and cannot include jurisdiction fixed effects in our Vote Solar estimates.  
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weighting is to ensure that all jurisdictions are weighted equally, regardless of the number of PV 
systems installed; as a result, each observation in jurisdiction j is weighted by the inverse of the 
number of installations within jurisdiction j.  

We performed a number of other tests to help check the robustness of our results. Each control 
variable was independently removed to determine whether any individual controls had a 
disproportionate effect on the outcomes. Though the regression results are not presented in the 
present study, the coefficient estimates for Vote Solar and RSC scores were robust to the 
removal of all of the control variables. We also tested the possible inclusion of additional control 
variables (including registered voter affiliation, land area and population density), but found that 
the efficiency gains from including these extra controls was outweighed by the cost of lost 
observations due to limitations in the underlying data set. We experimented with adding non-
linear time trends (including various polynomial functions, and functions that might be 
associated with “learning-by-doing”) and time-based fixed effects, but neither had a significant 
impact on the variables of interest. Finally, we ran the regressions with the removal of both 
large- and small-sample jurisdictions and with standard errors clustered at the jurisdiction and 
state level. The results of these last two robustness checks are summarized in the next section.  

Results and Interpretation  
The results provide evidence that local regulatory and permitting processes can have meaningful 
impacts on installed PV prices. Our preferred regression specifications for the Vote Solar and 
RSC scores include state fixed effects and jurisdiction fixed effects, to control for potential time-
invariant and unobservable PV price drivers at the state or jurisdiction level. These preferred 
specifications are presented in column (2) in Table 6 and in columns (2) and (4) in Table 7. Our 
results suggest that a 1 point increase in the Vote Solar score is associated with an average 
$0.021/W reduction in residential PV prices, while a 1 point increase in the RSC score is 
associated with a $0.00093/W – $0.00135/W reduction in residential PV prices.  

The results for Vote Solar—using a larger dataset—are more robust. In particular, the exclusion 
of state-level fixed effects (column 1, Table 6) and the application of sample weighting (column 
3, Table 6) do not meaningfully impact the size or statistical significance of the Vote Solar score 
variable, with a range of just $0.021/W to $0.023/W. The results for the DOE’s Rooftop Solar 
Challenge, on the other hand, are significantly impacted by model specification. The exclusion of 
state- and jurisdiction-level fixed effects (column 1, Table 7), for example, reduces the size of 
the estimated impact to $0.0004/W, whereas sample weighting (columns 3 and 5, Table 7) leads 
the RSC score variable to lose statistical significance; the sample weighting results are discussed 
in further detail later in this section.  
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Table 6. Regression Results: Vote Solar 

 (1) (2) (3) 
  Price/W Price/W Price/W 

VS score -0.0208*** 
(0.003) 

-0.0209*** 
(0.003) 

-0.0231** 
(0.008) 

system size -0.560*** 
(0.020) 

-0.564*** 
(0.020) 

-0.606*** 
(0.053) 

system size squared 0.0343*** 
(0.002) 

0.0353*** 
(0.002) 

0.0378*** 
(0.004) 

new construction -0.548*** 
(0.046) 

-0.517*** 
(0.047) 

-0.517*** 
(0.097) 

BIPV 0.758*** 
(0.070) 

0.840*** 
(0.071) 

1.033*** 
(0.214) 

thin film 0.340 
(0.178) 

0.397* 
(0.174) 

0.275 
(0.210) 

China -0.405*** 
(0.015) 

-0.429*** 
(0.015) 

-0.522*** 
(0.035) 

micro-inverter 0.627*** 
(0.019) 

0.597*** 
(0.019) 

0.326*** 
(0.041) 

TPO 0.330*** 
(0.021) 

-0.0203 
(0.025) 

-0.189*** 
(0.053) 

education level -0.989*** 
(0.068) 

-0.0879 
(0.070) 

-0.0461 
(0.171) 

mean house value 0.00109*** 
(0.000) 

0.00000867 
(0.000) 

-0.000266 
(0.000) 

mean income -0.000258 
(0.000) 

0.000669 
(0.000) 

0.00154 
(0.001) 

household density 1.148*** 
(0.053) 

1.169*** 
(0.053) 

1.317*** 
(0.173) 

labor cost index -0.0130*** 
(0.001) 

-0.0125*** 
(0.001) 

-0.00178 
(0.002) 

installer experience -0.000212*** 
(0.000) 

-0.000295*** 
(0.000) 

-0.0000303 
(0.000) 

aggregate experience -91.67*** 
(6.357) 

-63.15*** 
(6.848) 

-3.028 
(15.274) 

installer density -1.034*** 
(0.098) 

-1.494*** 
(0.101) 

-0.609** 
(0.201) 

installer market share -0.0938 
(0.083) 

-0.129 
(0.079) 

-0.415* 
(0.190) 

HHI -1.001*** 
(0.099) 

-0.292* 
(0.122) 

-0.219 
(0.281) 

value of solar 0.204*** 
(0.009) 

0.0421*** 
(0.011) 

-0.0297 
(0.022) 

time -0.0743*** 
(0.002) 

-0.0882*** 
(0.002) 

-0.102*** 
(0.004) 

pweight   yes 
state fixed effect  yes yes 
R2 0.316 0.340 0.313 
N 43551 43551 43551 
Robust standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 7. Regression Results: Rooftop Solar Challenge 

 (1) (2) (3) (4) (5) 
 Price/W Price/W Price/W Price/W Price/W 

RSC score -0.000406** 
(0.000) 

-0.000930*** 
(0.000) 

-0.000370 
(0.001) 

-0.00135*** 
(0.000) 

0.000553 
(0.001) 

system size -0.682*** 
(0.034) 

-0.717*** 
(0.036) 

-0.545*** 
(0.069) 

-0.676*** 
(0.035) 

-0.274* 
(0.110) 

system size squared 0.0451*** 
(0.003) 

0.0476*** 
(0.003) 

0.0364*** 
(0.006) 

0.0449*** 
(0.003) 

0.0119 
(0.010) 

new construction -1.081*** 
(0.083) 

-1.171*** 
(0.092) 

-0.458*** 
(0.137) 

-0.979*** 
(0.085) 

-0.190 
(0.148) 

BIPV 1.253*** 
(0.145) 

1.330*** 
(0.149) 

0.771*** 
(0.162) 

1.374*** 
(0.152) 

0.917*** 
(0.186) 

thin film 0.529 
(0.508) 

0.562 
(0.495) 

-0.324 
(0.258) 

0.537 
(0.506) 

-0.537* 
(0.219) 

China -0.342*** 
(0.028) 

-0.359*** 
(0.028) 

-0.263*** 
(0.065) 

-0.356*** 
(0.028) 

-0.218* 
(0.086) 

micro-inverter 0.496*** 
(0.034) 

0.487*** 
(0.033) 

0.298*** 
(0.059) 

0.507*** 
(0.034) 

0.405*** 
(0.077) 

TPO 0.328*** 
(0.042) 

0.0518 
(0.062) 

0.304* 
(0.125) 

-0.0480 
(0.052) 

-0.0431 
(0.100) 

education level -1.905*** 
(0.126) 

-0.422** 
(0.163) 

-0.666 
(0.440) 

-0.721*** 
(0.138) 

0.358 
(0.389) 

mean house value 0.00190*** 
(0.000) 

0.000462* 
(0.000) 

0.000768 
(0.001) 

0.000474** 
(0.000) 

-0.000219 
(0.000) 

mean income -0.000786 
(0.001) 

0.000314 
(0.001) 

0.00236 
(0.002) 

0.000533 
(0.001) 

-0.000957 
(0.002) 

household density 1.655*** 
(0.145) 

11.25** 
(4.132) 

1.065 
(4.414) 

0.655*** 
(0.155) 

1.244** 
(0.393) 

labor cost index -0.0254*** 
(0.003) 

-0.0969*** 
(0.011) 

-0.0465* 
(0.020) 

-0.00670* 
(0.003) 

-0.00555 
(0.006) 

installer experience -0.0000918* 
(0.000) 

-0.000413*** 
(0.000) 

-0.0000494 
(0.000) 

-0.000287*** 
(0.000) 

-0.000358 
(0.000) 

aggregate experience -221.6*** 
(13.281) 

-181.0*** 
(40.052) 

-165.3* 
(69.419) 

-154.6*** 
(14.657) 

-39.56 
(35.726) 

installer density -0.486** 
(0.187) 

0.978 
(0.503) 

-0.729 
(0.902) 

-0.727*** 
(0.182) 

-1.406** 
(0.515) 

installer market share -1.355*** 
(0.193) 

-0.287 
(0.207) 

-2.748*** 
(0.662) 

-0.635** 
(0.206) 

-0.121 
(0.960) 

HHI -5.982*** 
(0.451) 

-0.769 
(0.916) 

-1.316 
(1.631) 

-1.713*** 
(0.452) 

0.101 
(1.322) 

value of solar 0.189*** 
(0.018) 

0.108*** 
(0.030) 

0.211*** 
(0.059) 

0.0187 
(0.024) 

0.0743 
(0.046) 

time -0.0524*** 
(0.003) 

-0.0469*** 
(0.004) 

-0.0495*** 
(0.010) 

-0.0684*** 
(0.003) 

-0.0706*** 
(0.008) 

pweight   yes  yes 
state fixed effect    yes yes 
Jurisdiction fixed effect  yes yes   
R2 0.382 0.422 0.475 0.398 0.371 
N 13904 13904 13904 13904 13904 
Robust standard errors in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001 
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Focusing for the moment on the more-preferred specifications, Figures 3 and 4 summarize the 
impact of marginal changes in Vote Solar and RSC scores on average residential PV prices, 
across the full set of jurisdictions (and scores) in the data. We predict marginal changes in PV 
prices by multiplying the coefficient on score from model (2) and models (2) and (4) for the Vote 
Solar and RSC programs, respectively, by the observed difference in scores between each 
jurisdiction, while holding all other control variables constant at their average values. 

These predictions indicate that the average price of residential PV systems in the highest scoring 
Vote Solar jurisdiction, all else being equal, would be approximately $0.18/W lower than the 
average price in the lowest-scoring jurisdiction (Figure 3). This variation across jurisdictions 
equates to roughly 3% of average residential PV prices in 2012. When focusing on the inner 90 
percent of jurisdiction scores (to remove outlier jurisdictions), the impact range drops to $0.14/W 
(2.2%). The size of the predicted impact from the DOE’s Rooftop Solar Challenge is larger, with 
PV prices from the highest- to lowest-scoring jurisdictions (across both scoring time periods) 
varying by $0.64/W or $0.93/W, depending on model specification (Figure 4). This variation 
equates to 10-15% of average PV prices in 2012, but is impacted by the lowest- and highest-
scoring jurisdictions as indicated in Figure 4. When focusing on the inner 90 percent of 
jurisdiction scores (to remove outlier jurisdictions), the impact range drops to $0.50/W or 
$0.73/W (8-12%), depending on model specification.  

 
Figure 3. Predicted Relationship between Vote Solar Scores and PV Prices  
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Figure 4. Predicted Relationship between Rooftop Solar Challenge Scores and PV Prices  

As another intuitive measure of the impact of local permitting and other regulatory processes on 
PV prices, the average RSC score improved by 163 points in our sample from the baseline score 
to the final score. This average score increase translates to a predicted decline in PV prices of 
$0.15-$0.22/W (2.5-3.6%). The total decline in average PV prices from 2011 to 2012 was 
approximately $1.16/W in our sample dataset. Our results therefore suggest that, on average, 13-
19% of the total price change might be attributed to improvements in permitting and other local 
regulatory processes in participating RSC jurisdictions, equating to $700–1100 for an average 
sized residential PV system.  

As expected, the results show that RSC scores appear to drive larger local price variations 
($0.64-0.93/W; as much as $3200-4700 for a typically sized residential system, but $2500-3700 
when focusing on the inner 90 percent of jurisdiction scores) than Vote Solar scores ($0.18/W; as 
much as $900 for a typically sized residential system, but $700 when focusing on the inner 90 
percent of scores). Though the two datasets cover different geographies and the scoring methods 
are not perfectly comparable, presumably these results are driven, in part, by the fact that the 
RSC scores embed not only variations in local permitting requirements, but also variations in 
interconnection procedures, planning and zoning, financing options, and net metering rules; Vote 
Solar scores, on the other hand, narrowly focus on local permitting procedures. These results 
suggest that local permitting practices do play a strong role in explaining PV price differences, 
but that other local regulatory procedures also play important roles.  
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The validity of these models is supported by the results for many of the control variables, most of 
which have coefficients with the expected sign. Specifically, the coefficients on PV system size 
and size squared consistently show that PV prices decrease as system sizes increase but with 
diminishing margin returns. Other system-level characteristics also have the predicted impacts on 
PV prices: systems installed in new construction or with Chinese-manufactured modules have 
lower prices, whereas BIPV systems and those using micro-inverters have higher prices. Results 
for thin-film modules and third-party owned systems are mixed, with some specification 
suggesting a small price premium, but with other models finding insignificant or even the 
opposite effect. As for the demographic and socio-economic variables, an increase in average 
education levels tends to result in lower PV prices, perhaps suggesting that competitive bidding 
is more common for these customers. Increased average housing values, in many specifications, 
leads to higher PV prices, whereas household income is found to have inconsistent or statistically 
insignificant effects, but collinearity among these and other variables is of some concern. The 
coefficients for the labor cost index and household density variables are in opposition to our 
expectations, but may similarly be impacted by collinearity with other variables that proxy for 
the cost of living, as found in Dong and Wiser (2013). Among the other market-level 
characteristics, increases in aggregate- and installer-level experience as well as installer density 
lead to lower PV prices, as expected. Installer market share tends to have a negative coefficient, 
further suggesting some economies of scale at the local level. These installer-level results also 
suggest that reductions in soft costs are passed on to the consumer in the form of lower prices. 
The HHI variable has an unexpected sign, perhaps suggesting that the impact of local installer 
scale in reducing prices outweighs market-power considerations. The value of solar coefficient 
tends to have a positive sign, indicating that installers are able to raise PV prices in those markets 
that provide higher financial incentives for solar installations. Finally, prices decline with time.13   

Notwithstanding these findings, other regression specifications suggest a certain level of nuance 
in these results. In particular, the weighted regressions suggest that a small number of large 
jurisdictions drive the statistical significance of the coefficient of interest for the RSC results. In 
particular, as shown in columns (3) and (5) in Table 7, the score coefficients in the RSC 
regressions lose significance when all jurisdictions are weighted equally, i.e., increasing the 
influence of small-sample jurisdictions and decreasing the influence of large-sample 
jurisdictions.14 On the other hand, as shown in column (3) in Table 6, the Vote Solar results are 
not impacted by weighting, and so are not unduly influenced by large-sample jurisdictions. The 
impact of large-sample jurisdictions on the RSC results, but not the Vote Solar results, may 
simply be a consequence of the larger number of jurisdictions in the Vote Solar sample. 

13 Forthcoming work by LBNL will provide a deeper analysis of how these and other variables influence PV prices 
and price variability. 
14 This was verified by removing the largest jurisdictions (without weighting), with results similar to the weighting 
method; removing the smallest jurisdictions did not produce similar results. 
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Alternatively, these results may be an indication of an unexplained geographically heterogeneous 
impact of permitting and local regulatory processes on residential PV prices.  

Finally, we also ran the same regressions with standard errors clustered at the jurisdiction or state 
level to control for the potential correlation of unobservables below the jurisdiction or state 
level.15 Though not presented here, controlling for potential correlation within jurisdictions 
(clustering) reduces the statistical power of the results in all but one of our specifications for each 
scoring program, suggesting that installations within jurisdictions are affected by unobserved 
characteristics unique to each jurisdiction. 

Conclusion 
As PV module and other hardware costs have declined in recent years, the relative importance of 
non-hardware soft costs has grown. Understanding these soft costs – not just PII but also 
installation labor, customer acquisition, financing, etc. – and developing pathways for their 
reduction may be central to continued solar market expansion in the United States.  

This paper has statistically isolated the impacts of a portion of these soft costs, namely city-level 
permitting and other local regulatory processes, on residential PV prices. We find that variations 
among and improvements in local regulatory processes can meaningfully affect residential PV 
prices. Specifically, variations in local permitting procedures are found to drive differences in 
average residential PV prices of approximately $0.18/W across all jurisdictions in our Vote Solar 
sample, and $0.14 when focusing on the inner 90 percent of jurisdiction scores. For a typical 
residential PV installation, this equates to a $700 (2.2%) difference in system costs between 
jurisdictions with scores in the middle 90 percent of the range (i.e., 5th percentile to 95th 
percentile). When considering variations not only in permitting practices, but also in other local 
regulatory procedures, price differences are found to grow to as much as $0.64-0.93/W between 
the most-onerous and most-favorable jurisdictions in our RSC sample; this range drops to $0.50-
0.73/W when focusing on the inner 90 percent of jurisdiction scores. For a typical residential PV 
installation, this corresponds to a price impact of at least $2500 (8%) between jurisdictions with 
scores in the middle 90 percent of the range (i.e., 5th percentile to 95th percentile), demonstrating 
the magnitude of cost reduction that might be possible from streamlining regulatory regimes.  

As with Dong and Wiser (2013), these cross-jurisdiction results add to the previous literature 
that has sought to quantify the national average impacts of permitting and local procedures on 

15 Moulton (1990) showed that standard errors can be underestimated when variables are measured at different 
levels. In the present work, the dependent variable, price per watt, is measured at the system level, while the 
independent variable of primary interest (RSC or VS scores) is measured at the jurisdiction level.  
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PV prices. In particular, the present results show that estimates of national average impacts can 
mask the substantial variation of impacts among jurisdictions, and therefore also hide the 
potential for PV price reductions through streamlining the local procedures in those jurisdictions 
in which current practices are most onerous.   

These results also suggest that the Vote Solar and Rooftop Solar Challenge scores do measure 
real variations in permitting and other local regulatory processes. First, the Vote Solar and RSC 
scores are found to have statistically significant impacts on PV prices. Second, the overall size of 
the effects is broadly consistent with what one might expect, based in part on previous literature. 
Third, as anticipated, the results show that RSC scores appear to drive larger overall price 
variations than the Vote Solar scores. Presumably, this is in part because the RSC scores embed 
not only variations in local permitting requirements, but also variations in interconnection 
procedures, planning and zoning, financing options, and net metering rules; Vote Solar scores, 
on the other hand, narrowly focus on local permitting procedures.  

Especially given the much-higher PV prices seen in the United States relative to other major 
solar markets internationally, additional research is warranted to further explore the impact of 
local regulatory procedures. First, it would be helpful to expand the frame of the analysis to 
explore more-broadly the impact of these procedures on the participation of (and competition 
among) installers in certain jurisdictions (expanding on Tong 2012) as well as on PV demand in 
those jurisdictions (expanding on Li and Yi 2014, Shrimali and Jenner 2013). Second, though the 
present analysis has focused on smaller, residential PV installations, it would be helpful to 
expand this type of work to also understanding price variations among larger, commercial 
installations. Third, as the DOE’s Rooftop Solar Challenge continues, it may be useful to 
evaluate the impact of that specific program by analyzing PV price trends in participating 
jurisdictions relative to non-participating jurisdictions. Finally, because permitting and other 
local regulatory processes drive only a fraction of the heterogeneity in PV prices seen in the 
United States, further research to understand the full suite of driving influences would be 
valuable, and is underway by LBNL and its partners – Yale University, University of Wisconsin, 
and University of Texas at Austin.   
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Appendix A. Summary Statistics 
 

Summary Statistics: Vote Solar 
 mean s.d. min max count 
system price ($/W) 6.061 1.677 1.507 19.673 49864 
Vote Solar score 3.104 2.229 0.000 8.500 49864 
system size 5.060 2.135 1.000 10.000 49864 
system size squared 30.163 23.764 1.000 100.000 49864 
new construction 0.036 0.186 0.000 1.000 49864 
BIPV 0.008 0.089 0.000 1.000 49864 
thin film 0.004 0.062 0.000 1.000 49864 
China 0.270 0.444 0.000 1.000 44295 
micro-inverter 0.251 0.434 0.000 1.000 44713 
TPO 0.405 0.491 0.000 1.000 49864 
education level 0.360 0.177 0.000 0.928 49821 
mean house value 462.215 219.946 61.647 1182.356 49635 
mean income 94.026 34.643 28.300 394.381 49644 
household density 0.098 0.163 0.000 2.837 49819 
labor cost index 57.032 14.732 25.140 110.007 49679 
installer experience 119.388 192.868 1.000 2142.346 49864 
aggregate experience 0.003 0.001 0.000 0.009 49819 
installer density 0.152 0.096 0.000 1.479 49822 
installer market share 0.086 0.140 0.000 1.000 49469 
HHI 0.101 0.114 0.024 1.000 49469 
value of solar 6.278 1.609 1.844 14.632 49672 
time 11.360 5.625 1.000 20.000 49864 

 
Summary Statistics: Rooftop Solar Challenge 

 mean s.d. min max count 
system price ($/W) 6.113 1.725 1.507 19.409 16427 
RSC score 679.462 106.504 228.000 914.000 16427 
system size 4.887 2.149 1.000 10.000 16427 
system size squared 28.497 23.108 1.000 100.000 16427 
new construction 0.040 0.195 0.000 1.000 16427 
BIPV 0.005 0.071 0.000 1.000 16427 
thin film 0.004 0.059 0.000 1.000 16427 
China 0.261 0.439 0.000 1.000 14055 
micro-inverter 0.257 0.437 0.000 1.000 14179 
TPO 0.380 0.485 0.000 1.000 16427 
education level 0.386 0.183 0.000 0.913 16407 
mean house value 489.143 222.126 100.071 1160.356 16391 
mean income 95.326 36.752 29.476 320.744 16399 
household density 0.138 0.220 0.001 2.837 16422 
labor cost index 57.562 12.300 28.130 102.270 16422 
installer experience 163.685 270.184 1.000 2142.346 16427 
aggregate experience 0.003 0.001 0.000 0.007 16422 
installer density 0.140 0.088 0.000 0.717 16423 
installer market share 0.059 0.073 0.000 0.895 16295 
HHI 0.071 0.041 0.024 0.943 16295 
value of solar 6.254 1.663 3.285 14.141 16419 
time 11.482 5.700 1.000 20.000 16427 
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