Local Jurisdictions Going Solar with Leases and Power Purchase Agreements

SOLAR POWERING IOWA CONFERENCE 2016 MARCH 24, 2016 THE POWER BUREAU

Overview

Introductions

Public Sector Considerations

Financing Structures

- Owner Financing
- Third Party Financing

Procurement with a Power Purchase Agreement

Key Questions

Discussion

Introductions

Mark Pruitt

Introductions

Mark Pruitt

- Currently
 - Principal, **The Power Bureau** Energy Planning and Procurement
 - Principal, Illinois Community Choice Aggregation Network Municipal aggregation planning, procurement

Introductions

Mark Pruitt

- Currently
 - Principal, **The Power Bureau** Energy Planning and Procurement
 - Principal, Illinois Community Choice Aggregation Network Municipal aggregation planning, procurement
- Formerly
 - Director, Illinois Power Agency Wholesale Electricity Procurement for Ameren and ComEd. Managed the Illinois Renewable Portfolio Standard
 - Program Director, Energy Resources Center Retail Electricity and Natural Gas purchasing manager for 32 state agencies and local municipalities
 - Project Developer, Nicor Energy Solutions Cogeneration and efficiency project development for federal facilities

BENEFITS

CHALLENGES

BENEFITS

CHALLENGES

Long term stability

 Public sector facilities tend to remain in operation over the long term

BENEFITS

CHALLENGES

Long term stability

 Public sector facilities tend to remain in operation over the long term

Policy Positions

- Sustainability
- Renewable Portfolio Standard

BENEFITS

CHALLENGES

Long term stability

 Public sector facilities tend to remain in operation over the long term

Policy Positions

- Sustainability
- Renewable Portfolio Standard

Growing Interest

Financial, constituencies

BENEFITS

Long term stability

 Public sector facilities tend to remain in operation over the long term

Policy Positions

- Sustainability
- Renewable Portfolio Standard

Growing Interest

Financial, constituencies

CHALLENGES

Capital Rationing

Competition for limited capital

BENEFITS

Long term stability

 Public sector facilities tend to remain in operation over the long term

Policy Positions

- Sustainability
- Renewable Portfolio Standard

Growing Interest

Financial, constituencies

CHALLENGES

Capital Rationing

Competition for limited capital

Procurement Requirements

- Project specifications
- Provider qualifications
- Selection criteria (price, value, etc.)
- Final approval from Board

BENEFITS

Long term stability

 Public sector facilities tend to remain in operation over the long term

Policy Positions

- Sustainability
- Renewable Portfolio Standard

Growing Interest

Financial, constituencies

CHALLENGES

Capital Rationing

Competition for limited capital

Procurement Requirements

- Project specifications
- Provider qualifications
- Selection criteria (price, value, etc.)
- Final approval from Board

Contract Terms

Non-appropriation clause

Financing Structures: Overview

Need for Financing with Solar PV Projects

- Secure capital to support development of projects
- Designed with specific project and owner characteristics in mind

Financing Structures: Overview

Need for Financing with Solar PV Projects

- Secure capital to support development of projects
- Designed with specific project and owner characteristics in mind

Revenue Streams that Support Solar PV Project Finance

- Avoided Costs Electricity supply/capacity/transmission/distribution/taxes
- New Revenue SREC sales, Tax Credits, Depreciation, Grants

Financing Structures: Overview

Need for Financing with Solar PV Projects

- Secure capital to support development of projects
- Designed with specific project and owner characteristics in mind

Revenue Streams that Support Solar PV Project Finance

- Avoided Costs Electricity supply/capacity/transmission/distribution/taxes
- New Revenue SREC sales, Tax Credits, Depreciation, Grants

General Financing Structures

- Owner Financed Cash, Debt
- Third Party Financed Leases, Power Purchase Agreements

Financing Structures: Public Sector

Public sector project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Funded with cash reserves, no grants, no tax or SREC benefits
- All savings retained by host

Financing Structures: Public Sector

Public sector project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Funded with cash reserves, no grants, no tax or SREC benefits
- All savings retained by host

Advantages

- Low Cost of Capital
- Most transparent

Financing Structures: Public Sector

Public sector project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Funded with cash reserves, no grants, no tax or SREC benefits
- All savings retained by host

Advantages

- Low Cost of Capital
- Most transparent

Disadvantages

- Long term payback
- Tend to be driven by grants

Financing Structures: Private Sector

Private sector project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Funded with cash reserves, no grants, no tax or SREC benefits
- All savings retained by host

Financing Structures: Private Sector

Private sector project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Funded with cash reserves, no grants, no tax or SREC benefits
- All savings retained by host

Advantages

- Low Cost of Capital
- Substantial tax benefits
- Near-Term payback

Financing Structures: Private Sector

Private sector project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Funded with cash reserves, no grants, no tax or SREC benefits
- All savings retained by host

Advantages

- Low Cost of Capital
- Substantial tax benefits
- Near-Term payback

Disadvantages

Must compete with other investment options

Financing Structure: Third Party

Third Party project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Capital funded by developer,
- Supported by payments from host through a lease or Power Purchase Agreement

Financing Structure: Third Party

Third Party project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Capital funded by developer,
- Supported by payments from host through a lease or Power Purchase Agreement

Advantages

- No / little initial capital for host
- Tax benefits flow to the third party developer

Financing Structure: Third Party

Third Party project

- 500kW, \$2 million capital cost
- Offsetting \$0.09/kWh grid supply
- Capital funded by developer,
- Supported by payments from host through a lease or Power Purchase Agreement

Advantages

- No / little initial capital for host
- Tax benefits flow to the third party developer

Disadvantages

- Complexity
- Long term relationship between host and developer

Financing Structure: Third Party Options

Operating Lease

- Host pays fixed periodic fee, equivalent to expected energy production
- Host carries "technology risk"
- Lessor takes all tax credits
- Lessor responsible for O&M cost
- End-of-term cost is "fair market value"

Capital Lease

- Host pays fixed periodic fee, equivalent to expected energy production
- Host carries "technology risk"
- Lessor takes no tax credits
- O&M may be Host's responsibility
- End-of-term cost is nominal

Power-Purchase Agreement

- Host pays only for energy produced
- Eliminates "technology risk"
- Hedges against fluctuating utility and energy market costs
- PPA provider responsible for O&M cost
- More complicated agreement, difficult to work for smaller projects

Financing Structure: PPA Structure

A. Negotiated Agreement

Duration, prices, deliverables, etc.

B. Energy Deliveries

As metered

C. Regular Payments

- Purchase the energy generated
- Negotiated price and schedule

D. Export Excess Energy to Grid

Through local utility

E. Receive regular Utility Services

Continued relationship

Developer

- Coordinates finance, design, construction on Host's site
- Captures all incentives
- Monitors and maintains PV system

A. Agreement

B. kWh/kW deliveries

C. Regular Payments

Host

- Receives power from on-site PV system and utility
- Pays developer for delivered electricity

Utility

- Provides regular electricity service
- Provides net metering
- May reset PLC/NSPL to reflect on-site peak generation capacity

D. Excess kWh

E. Regular kWh/kW services

Procurement Process: Stages

Purpose

 Allows public sector buyer to better control the procurement process

Benefits

- Focuses expediting RFP process
- Sets appropriate internal expectation

Requirements

- Internal staff resources
- External Engineering Review
- Board coordination

Procurement Process: Tools

Site Assessment Tools

MS Excel workbook to compare direct purchase, lease, and PPA costs

Model Solicitation

- Focuses on Power Purchase Agreements
- Checklist for internally-generated materials
- Core solicitation documents and respondent forms

Model Agreements

Can be amended to meet internal requirements

Case Study: Illinois Sanitary District

Initial Project

- Initially identified 10 potential sites
- Ground- and roof-mounted systems

Economic Evaluations

- Using very conservative assumptions
 - 2 vacant sites eliminated
 - 6 remaining sites showed potential
 - 3 ground sites had the best potential (assuming a 1% per year increase in grid electricity supply)
- Current site electricity costs: \$0.069/kWh
 - Electricity supply (volume related elements only)
 - Distribution (volume-related elements only
 - Taxes (volume-related elements only)

Case Study: Illinois Sanitary District

Bid Results

- Lead bidder combined the three groundmount locations into a single offer:
 - kW AC Capacity: 1,360.80
 - kWh AC Output Year 1: 1,805,509
 - kWh AC Output 20-Years: 34,394,955
 - Total Area Requirement: 208,200 sq. ft.
- Also included utilizing battery storage to improve system functionality

Economics (20 Year PPA)

- Fixed price without escalations
 - SRECs sold at \$100: \$0.049/kWh
 - SRECs sold at \$0: \$0.059/kWh

Key Questions

How does management define value?

Setting a long term hedge, meet policy objectives

What is the targeted price to meet or beat?

Current market price, some level of escalation over time?

What is the optimal project size and other characteristics

Location, duration

What level of investment is management willing to make?

Staff time, capital, property options

Discussion

Thank you for your time and consideration

Mark Pruitt – The Power Bureau | markjpruitt@thepowerbureau.com | 219.921.3828