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Abstract 

Business process or “soft” costs account for well over 50% of the installed price of 
residential photovoltaic (PV) systems in the United States, so understanding these costs is 
crucial for identifying PV cost-reduction opportunities. Among these costs are those 
imposed by city-level permitting processes, which may add both expense and time to the 
PV development process. Building on previous research, this study evaluates the effect of 
city-level permitting processes on the installed price of residential PV systems and on the 
time required to develop and install those systems. The study uses a unique dataset from 
the U.S. Department of Energy’s Rooftop Solar Challenge Program, which includes city-level 
permitting process “scores,” plus data from the California Solar Initiative and the U.S. 
Census. Econometric methods are used to quantify the price and development-time effects 
of city-level permitting processes on more than 3,000 PV installations across 44 California 
cities in 2011. Results indicate that city-level permitting processes have a substantial and 
statistically significant effect on average installation prices and project development times. 
The results suggest that cities with the most favorable (i.e., highest-scoring) permitting 
practices can reduce average residential PV prices by $0.27–$0.77/W (4%–12% of median 
PV prices in California) compared with cities with the most onerous (i.e., lowest-scoring) 
permitting practices, depending on the regression model used. Though the empirical 
models for development times are less robust, results suggest that the most streamlined 
permitting practices may shorten development times by around 24 days on average (25% 
of the median development time). These findings illustrate the potential price and 
development-time benefits of streamlining local permitting procedures for PV systems. 

 
Key Words: photovoltaic; permitting process; installation prices; development times 
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1. Introduction 

The cost of photovoltaic (PV) systems has declined dramatically (Barbose et al., 2012), 

opening new and growing markets for solar energy (Bazilian et al., 2013). Recent literature 

has sought to understand these cost trends (Wiser et al., 2007; Branker et al., 2011; Peters 

et al., 2011; Hernandez-Moro and Martinez-Duart, 2013) and the variation in costs caused 

by altered assumptions and market contexts (Zweibel, 2010; Darling et al., 2011; 

Reichelstein and Yorston, 2013; Seel et al., 2013). Additionally, a substantial literature on 

learning and experience has been applied to solar energy (e.g., Schaeffer et al., 2004; 

Soderholm and Sundqvist, 2007; Neij, 2008; van Benthem et al., 2008; Kahouli-Brahmi, 

2009; Nemet, 2009; Junginger et al., 2010; Green, 2011). Despite this body of work, further 

research is required to better understand the geographic scope of learning (Shum and 

Watanabe, 2008; Martinsen, 2011), to isolate learning-induced cost reductions from the 

variety of other factors that impact cost trends (e.g., Nemet, 2006; Mukora et al., 2009; Yu 

et al., 2011), and to explore learning and cost-reduction possibilities for non-hardware 

balance-of-system costs (Schaeffer et al., 2004; Hoff et al., 2010).  

This study builds on this literature by focusing squarely on understanding one 

component of non-hardware PV costs: the effect of U.S. city-level permitting processes on 

the installed price of residential PV systems and on the time required to develop and install 

those systems. Recent declines in PV system prices have been driven primarily by declining 

PV module prices (Barbose et al., 2012; Bazilian et al., 2013). As a result, non-hardware 

business process (or “soft”) costs currently account for well over 50% of the installed price 

of residential PV systems in the United States, 1 and understanding these costs is crucial for 

identifying further PV cost-reduction opportunities. City-level permitting processes are one 

core element of these business process costs, and they potentially add both considerable 

costs2 and development time to PV installations. The U.S. Department of Energy (DOE) 

                                                      
1 Ardani, et al. (2012) and Goodrich, et al. (2012) report non-hardware costs at roughly 50% of the total price 
of a typical residential PV system in the United States in 2010. With current PV module prices well below 
what was observed in 2010, non-hardware costs now constitute more than 60% of a typical installation price 
in the United States. Even as early as 1978, there was recognition that non-hardware costs were important, 
with NASA estimating very substantial balance-of-system costs (Rosenblum, 1978). 
2 Note that these costs could include both direct costs, in the form of administrative labor and fees imposed 
on PV installers, as well as indirect costs, in the form of economic rents that accrue to installers as a result of 
barriers to entry into local markets created by onerous permitting processes. 
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identified permitting procedures as a barrier to widespread PV deployment and launched 

the SunShot Rooftop Solar Challenge Program3 to address this barrier.  

A typical PV permitting process in the United States may involve many local 

government departmental reviews—such as building, electrical, mechanical, plumbing, fire, 

structural, zoning, and aesthetic reviews—as well as a permitting fee. In addition, site 

inspections and final approvals are required for permitting (by local agencies) and 

interconnection (by local utilities) purposes. On the one hand, these permitting processes 

could add long-term value to the PV industry by protecting consumers, promoting public 

safety, and rewarding the most diligent installers. However, the quantity and diversity of 

PV permitting documentation requirements, application procedures, inspection processes, 

and fees used by local jurisdictions complicates the business of PV installers: there are 

more than 18,000 local jurisdictions in the United States, each with unique and sometimes 

time-consuming and costly permitting requirements. Clean Power Finance surveyed 273 

installers across 12 states and found that more than one third of installers avoid 

jurisdictions with particularly challenging permitting processes (Tong, 2012). In sum, 

though permitting procedures do serve important public purposes, onerous procedures 

may impose unnecessary direct costs (administrative labor and permitting fees) and time 

on the PV development process and may also raise PV prices by creating entry barriers and 

thereby restraining competition among PV installers.  

Many efforts are underway in the United States to streamline and bring down the cost 

of local permitting processes. DOE’s Rooftop Solar Challenge is engaging diverse teams of 

local and state governments along with utilities, installers, non-governmental 

organizations, and others to make solar energy more accessible and affordable, including 

by working to reduce administrative barriers to residential and small commercial PV 

installations. SolarTech, a non-profit industry consortium, developed Solar3.0—A National 

Platform for Process Innovation to Deliver PV “to increase the competitiveness of solar PV 

by reducing non-hardware balance-of-system costs by 50% in identified U.S. solar 

communities by 2014.”4 SolarFreedomNow, a grassroots initiative, advocates a single 

national policy to cut paperwork and red tape.5 The DOE-funded Solar America Board for 

                                                      
3 For program information see http://www.eere.energy.gov/solarchallenge/. 
4 For information see http://solar30.org/.  
5 For information see http://solarfreedomnow.org/. 

http://www.eere.energy.gov/solarchallenge/
http://solar30.org/
http://solarfreedomnow.org/
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Codes and Standards (Solar ABCs) has developed an expedited permit process for PV 

systems (Brooks, 2012). Also funded by DOE, Clean Power Finance created a National Solar 

Permitting Database, an online tool that compiles solar permitting requirements from 

around the nation.6 In addition, states, such as California and organizations such as the 

Interstate Renewable Energy Council (IREC) have initiated efforts to expedite permitting 

and field inspections (OPR, 2012; IREC, 2010). California, Colorado, and a limited number 

of other states have created caps on the permit fees that can be automatically charged for 

PV installations, while Vermont uses a streamlined state-wide registration process for PV 

and eliminates local permitting requirements. Stanfield et al. (2012) describe the diversity 

of approaches that can and have been used to streamline and lower the cost of local 

permitting requirements. 

Several approaches have been used to compile and analyze the cost impacts of local 

permitting processes for PV installations. The Sierra Club’s California Solar Permit Fee 

Campaign collected data to compare permit fees and time requirements across northern 

and southern California cities (Mills et. al, 2009; Mills and Newick, 2011). Building on the 

Sierra Club effort, Vote Solar created a Solar Permit Map, with additional city-level 

permitting data contributed by users (Vote Solar, 2013).7 A National Renewable Energy 

Laboratory survey of U.S. PV installers reported that residential PV permitting, inspection, 

and interconnection (PII) labor costs averaged $0.13/W; with an assumed average 

permitting fee of $0.09/W, total PII costs averaged $0.22/W (Ardani et al., 2012). This 

compares with a median total installed price of $6.10/W for PV systems less than 10 kW in 

size and installed in 2011 (Barbose et al., 2012). Lawrence Berkeley National Laboratory 

(LBNL) showed that PII costs in Germany averaged only about $0.03/W, almost $0.20/W 

lower than U.S. costs, owing to Germany’s uniform and simplified regulatory structure (Seel 

et al., 2013; see also the PVGrid project8).9 Earlier, Sunrun (2011) estimated that local 

permitting and inspection could cost $0.50/W in total for a typical residential installation 

in the United States, or $0.28/W if excluding the impact of permitting on sales and 

marketing costs as well as variations in building requirements. Only considering the labor 

                                                      
6 For information see http://www.solarpermit.org/. 
7 For information see http://votesolar.org/solar-map/.  
8 For information see http://www.pvgrid.eu/. 
9 Langen (2010), meanwhile, estimated PII costs of $0.8/W for the United States and $0.4/W for Germany. 

http://www.solarpermit.org/
http://votesolar.org/solar-map/
http://www.pvgrid.eu/
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costs of permitting (and excluding the permit fee), Clean Power Finance’s recent survey of 

PV installers yields an average estimate of roughly $0.11/W (Tong, 2012). As for impacts 

on development times, Clean Power Finance estimates that the average permitting process 

requires 8 weeks (Tong, 2012). Earlier, Sunrun (2011) reported that PV installation delays 

as a result of permitting procedures averaged 3.5 weeks.  

This study addresses two specific research questions. First, how does the permitting 

process at the city level affect residential PV installation prices, considering not only the 

permitting fee but also any labor or entry costs borne by PV installers? Second, how does 

the permitting process determine the time needed to develop a residential PV system? 

These questions are important because both cost and time requirements are crucial to the 

market viability of residential PV systems.  

To address these questions, this research examines a unique set of detailed permitting 

data from DOE’s Rooftop Solar Challenge Program, which includes city-level permitting 

process “scores,” plus data from the California Solar Initiative (CSI) and the U.S. Census. 

Econometric methods are used to quantify the price and development-time effects of city-

level permitting processes on more than 3,000 PV installations across 44 California cities in 

2011. The econometric methods used in this study complement the bottom-up approaches 

used in previous studies by empirically evaluating the importance of permitting on 

residential PV installation prices and development times across many cities after 

controlling for other influential factors, while focusing not on average impacts but rather 

on the range of impacts observed across cities. The results can further inform efforts to 

streamline residential PV permitting processes.  

The next section describes the data sources used for the present study, followed by 

descriptions of the econometric models for both installation prices and development times. 

The next two core sections present results from several different model configurations and 

an interpretation of these results. Finally, conclusions and suggestions for further work are 

discussed.  
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2. Data 

Comprehensive and comparable data on the residential PV permitting and inspection 

process in a multitude of jurisdictions have, until recently, been scarce because gathering 

such data from numerous local permitting authorities and installers requires considerable 

effort. Translating this information into simple quantitative metrics that are amenable to 

empirical analysis presents additional challenges. Previous work has focused primarily on 

compiling information on local permitting practices and fees and assessing the average 

labor costs associated with PII. These efforts, while valuable, do not enable a detailed 

econometric investigation of process variability at the city level. Below we discuss the 

permitting dataset used in the present study as well as the other data used to conduct our 

empirical analysis.  

2.1. Permitting process data 

The principal data source for this study is a unique dataset from DOE’s Rooftop Solar 

Challenge Program.10 Through this program, DOE surveyed more than 290 jurisdictions 

nationwide in 2011 (those participating in the program11) and developed quantitative 

permitting scores for each jurisdiction, based on a detailed questionnaire and weighting 

methodology. The questionnaire contained 21 questions related to seven categories of city 

permitting processes, including application, information access, process time, fees, best-

practice processes, inspection, and communication with the utility (see Appendix A for the 

list of questions; the specific scoring and weighting methodology is not publicly available). 

The maximum weighted permitting score for residential PV systems is 250, which would 

represent the most favorable city-level permitting process for residential PV considering 

the full range of possible issues addressed by the questionnaire.12  

                                                      
10 We investigated other possible PV permitting data sources, including data from Vote Solar, the Sierra Club, 
and Clean Power Finance. None of these sources enabled the ready creation of a comprehensive, comparable, 
current, geographically broad, quantitative permitting “score.” 
11 Because only the scores of participating jurisdictions are included in our analysis, there is some risk of self-
selection bias. Though this concern cannot be completely dismissed, we note that regional teams were 
selected for participation (not individual cities), ensuring a range of permitting procedures within the 
selected participants. In fact, the resulting permitting scores span a wide range, demonstrating that within 
our sample are cities that have both onerous and favorable permitting procedures.  
12 DOE also scored—but we do not include in our analyses—the local interconnection process, 
interconnection standards, net-metering standards, financing options, and planning and zoning. Similarly, 
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Our final dataset contains residential permitting scores for 44 cities in California 

(Figure 1), with scores ranging from 71 to 223 and with a mean of 138. The state’s largest 

cities—including Los Angeles, San Diego, San Jose, and San Francisco—are included in the 

sample, and the density of cities included is highest in the San Francisco Bay Area. These 44 

cities represent approximately 27% of California’s total population and around 20% of the 

state’s PV capacity for systems under 10 kW installed in 2011. As described in more detail 

later, our analysis approach is to assess the relationship between permitting scores in these 

cities with prices and development times for residential PV systems installed in 2011 in the 

same cities. 

 

 
Figure 1. California cities used in the analysis 

 

                                                                                                                                                                           
DOE scored the permitting process for larger commercial PV systems, but those data also are not included in 
our assessment. 
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2.2. PV system prices, development times, and other data 

California Solar Initiative information collected by LBNL constituted the second key 

data source. These data cover all California PV systems that received a CSI financial 

incentive and include pre-incentive system installation price, system size, utility area, city, 

various dates in the installation process, and whether the system is third-party owned 

(TPO). We use these data to calculate two dependent variables for each system: pre-

incentive installed prices ($/W) and development times. To calculate the development 

time in total days for any individual system, we use the “reservation request review date” 

as the start date. This date represents the point in time when an application is received by 

the CSI program to reserve a future state financial incentive for the PV system and is 

assumed to correlate with the initiation of the development process, because installers are 

able to earn the highest-possible incentive level if they reserve early. We then use the 

“online incentive claim request submitted date” as the end date for the development 

process, because companies must complete the installation before they claim an incentive 

payment. The system development time is the difference between these start and end 

dates. Admittedly, this variable is an imperfect proxy for PV development times, which is 

one of a number of reasons that we are somewhat less confident in the development-time 

results presented later in this paper.  

Also used in the analysis are city-level variables—such as median household income, 

median household value, education level, population density, and median number of 

rooms per household—from the U.S. Census Bureau (2012). In addition, we use average 

annual electrician wage data from Salary.com, which estimates career-specific wages by 

city. These independent variables are used to control for confounding factors that could 

affect PV installation prices and development times. For instance, cities with greater 

median household income tend to have both higher permitting scores and higher 

installation prices; failing to control for such a variable could bias the bivariate correlation 

between permitting score and price.  

2.3. Summary statistics 

The final dataset used for the analysis includes 3,277 residential PV systems installed 

in the 44 California cities in 2011 (16% of the under 10 kW, 2011 systems reported in the 
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CSI database), as this timeframe corresponds to DOE’s scoring of the cities’ residential 

permitting processes. Only residential systems smaller than 10 kW are included, as 

residential systems over 10 kW are considered inapplicable to our analysis (e.g., many are 

multi-family housing or are otherwise outliers). 

We include in our analysis customer-owned residential PV systems. However, a 

growing percentage of California residential PV systems are owned by third parties, with 

the host customer leasing or purchasing the power from such systems. We excluded from 

our analysis—where possible—appraised-value TPO PV systems, because the prices 

reported for such systems are not actual transaction prices as paid by a customer for a 

specific PV system but rather are based on the assessed “value” of a collection of PV 

systems. The price reported for non-appraised TPO systems typically represents the 

transaction between the installer of the system and the third-party service provider; 

whether this price is “biased” relative to customer-owned PV systems is unclear, so we run 

the price-based regression analysis both with these systems included and with these 

systems excluded.13 When all TPO systems are excluded (as opposed to only appraised-

value TPO systems), the sample size is reduced from 3,277 to 2,450 systems. Barbose et al. 

(2012) provide more information on price reporting for TPO and customer-owned PV and 

why it is important to exclude appraised-value TPO systems from analysis of PV prices. 

The variable names, definitions, and descriptive statistics used in the regression 

analysis are summarized in Table 1. System-level installation prices are measured in 

nominal 2011 U.S. dollars. The mean price of the full sample is about $6.60/W (compared 

with $6.70/W for the California-wide mean residential price for systems installed in 2011 

(Barbose et al., 2012)). The development-time variable is converted to logarithmic form to 

better approximate a normal distribution.14 The residential permitting scores are divided 

by 100 to be more compatible with the scale of the dependent variables. We centered the 

system size variable (csize) by subtracting the sample mean from the actual size. This 

method is used to reduce collinearity when including both the square term of a variable 

                                                      
13 The development-time analysis presented here excluded appraised-value-based TPO systems but did not 
exclude non-appraised-value TPO systems, as there was little reason to believe that development-time 
reporting would be impacted by such systems.  
14 Though not as necessary for the purpose of approximating a normal distribution, we did estimate 
regressions for the log of installation prices as well; the results (not shown in this paper) were similar to 
those presented here without the logarithmic conversion.  
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and the variable itself. After this transformation, the new mean of system size is zero, as 

shown in the table. Both the level and square terms are included to test for economies of 

scale and diminishing returns of scale.  

We calculate three additional variables using the raw data that have not already been 

mentioned. The variable month_perstart denotes a continuous month number 

representing when the customer/installer applied for CSI incentives (a proxy for the time 

at which system pricing was established). This time-trend variable intends to capture 

observed lower system pricing over time, even within the narrow 1-year installation 

window that is the focus of the present analysis.15 The variable installationdensity 

represents the total number of residential PV systems installed per city per unit of city 

area from 2007 to 2011, which may capture potential local learning effects or other local 

impacts due to the overall density of recent solar installations. The variable weekcount 

indicates the total number of PV systems entering the CSI incentive program (and 

therefore development pipeline) every week for each utility service area; a large number 

of systems entering this pipeline in any given week could cause congestion during the 

incentive processing, interconnection, or permitting process and therefore impact the 

development times of PV systems that are in our sample.16 

                                                      
15 We used the variable month_perstart as a continuous variable starting from the first month, instead of a 
series of monthly dummy variables, because: (1) our analysis is focused on cross-sectional variation in the 
dependent variable rather than time-series analysis, and using monthly dummy variables would reduce 
degrees of freedom; and (2) the coefficients for this variable, shown later, are relatively stable across models, 
indicating the sufficiency of this variable in capturing time-series variations in the dependent variable. 
16 This may be especially true right before a drop in CSI incentive levels, as applications stream in to receive 
the higher incentive level. 
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Table 1. Variable definitions and summary statistics for full sample of 3,277 systems 

Variable Name Definition Mean Std. Dev. Min Max Unit 

priceperwatt System-level total installation price (pre-incentives) per watt (direct 
current, standard test conditions) 6.620 1.459 2.371 13.841 nominal $ / W 

develop_time 
Number of days between incentive application submittal and incentive 
request, logarithm form (proxy for the number of days the 
customer/installer spent completing development tasks for a system) 

4.571 0.797 017 6.454 log(days) 

res_permitting DOE Solar Rooftop Challenge permitting score for residential sector for 
each city 1.517 0.349 0.71 2.23 integer / 100 

csize System size centered 0 2.112 -3.477 5.373 kW 

csize2 Square term of system size centered 4.459 5.442 0 28.865 kW2 

PG&E Indicator for systems located in the Pacific Gas and Electric (PG&E) 
service area 0.658 0.475 0 1 0 or 1 

CCSE Indicator for systems located in the California Center for Sustainable 
Energy (CCSE, San Diego) area 0.204 0.403 0 1 0 or 1 

SCE Indicator for systems located in the Southern California Edison (SCE) 
area 0.139 0.346 0 1 0 or 1 

month_perstart 
Continuous month number when the customer/installer applied for CSI 
incentives (proxy for the month in which system pricing was 
established, starting with January 2009) 

26.237 5.236 7 36 integer 

electrician Average annual electrician wage for each city 54.657 2.702 50.522 60.248 nominal $ / 1,000 

medHHincome Median household income for each city 61.032 12.797 26.731 120.326 nominal $ / 1,000 

medHHvalue Median household value for each city 48.359 17.268 16.140 98.550 nominal $ / 10,000 

popdensity Population density for each city 5.898 4.343 1.380 16.836 persons / mile2 / 
100 

roomnumber Median number of rooms per household for each city 4.984 0.556 3.4 6.6 decimal value 

installationdensity Total number of residential PV systems installed per city per unit of area 
from 2007 to 2011 0.224 0.350 0.002 1.910 systems / mile2 / 

100 

weekcount Number of PV systems applying for a CSI incentive within each week for 
each CSI program administrator 4.091 4.208 0.1 27.8 integer / 10 

college % of population in city that has any college education (but has not 
earned a bachelor’s degree) 29.836 6.159 12.6 39.6 percentage 

bachelor % of population in city that has earned a bachelor’s degree or above 34.267 13.385 1.3 68.9 percentage 

                                                      
17 There are two systems with a calculated development time of 1 day and five systems with less than 7 days; on the other end, there are eight systems with 
calculated development times of more than 550 days and 26 with more than 500 days. Though these systems might be considered outliers, it is challenging 
to define strict cut-offs for such outliers. We did experiment with the removal of possible outliers (results not shown in the present paper); these 
regressions did not change the sign but in some cases did reduce the statistical significance of our development-time results. 
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3. Regression Models and Factor Analysis 

The regression analyses presented in this section include various combinations of the 

dependent and independent variables discussed previously, in an attempt to reduce the 

impact of omitted variable bias while also only including variables for which clear 

hypotheses could be formed. Possible additional variables were considered (such as city-

level solar insolation, number of firms and other installer and local competition variables, 

political affiliation, age groups and races, and seasonality) as were variable 

combinations.18 We chose the final variables and regressions based on hypotheses for 

variable impacts, statistical significance, and model parsimony.  

We estimate three core sets of regressions: one for PV installation prices including 

customer-owned and non-appraised-value TPO systems, one for PV installation prices 

excluding all TPO systems, and one for development times including customer-owned and 

non-appraised-value TPO systems. We do not present results for development times with 

all TPO systems excluded, because there was no obvious reason to believe that 

development times would be reported differently for non-appraised-value TPO systems 

than for customer-owned systems.19  

The general regression model is as follows: 

 

where  denotes a solar system,  is a city ID,  represents the typical regression 

coefficients including the constant term, and  captures the idiosyncratic errors. The key 

regressor is the residential permitting score. About half of the control variables vary with 

systems ( ) including system sizes, utility-area dummies,20 and system development 

starting time; the other half of the control variables ( ) only vary with cities, such as city-

                                                      
18 We specifically investigated the addition of controls for seasonality and installer-specific factors in the 
model. The inclusion of seasonality did not have any impact on the core results of our analysis, for either 
installation prices or development times, and these results are therefore not reported here. The inclusion of 
installer-specific factors in the form of larger-installer (≥ 10 installations in 2011) dummy variables did not 
meaningfully change our core results for price regressions but did render the coefficients of permitting scores 
for the development-time regressions insignificant in many cases. That is one reason that we are less 
confident in the development-time regression results presented in this study. 
19 We did test this assumption by running regressions for development times with all TPO systems excluded; 
the results of those regressions are similar to those presented here.  
20 Utility-area dummy variables are included to imperfectly control for several possible effects: different CSI 
incentive steps and PV deployment levels, different interconnection procedures, and different electricity rates 
and therefore PV investment attractiveness.  
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level electrician wages, median household incomes, installation density, and education 

variables. Because different cities have very different numbers of systems in the sample, 

we weighted each system using the inverse of system counts for its city to ensure every 

city is considered equally,21 similar to the way the permitting scores were assigned.  

The key hypothesis is straightforward: after controlling for all other variables, more 

favorable permitting processes for PV systems (i.e., cities with higher permitting scores) 

will yield reduced installation prices and shortened development times. Thus, we expect

 to be negative. Other hypotheses that are unrelated to the core purpose of our work 

but are instead related to our control variables—such as economies of scale, technology 

advancement over time, and local learning—are discussed in the results below.  

Before presenting the results, one additional control variable, “cost of living,” must be 

explained further. We use this composite variable in a subset of the regressions that 

follow, because we found that many individual control variables—such as median 

household income, median household value, and electrician wage—overlap, at least to 

some degree, and many may relate to the cost of living in a city. We use principle 

component analysis (PCA) to extract common factors out of these relevant individual 

variables, and the proportion of variance accounted for by the common factors indicates 

the goodness of the extraction.  

More specifically, our factor analysis is based on five related variables: median 

household income, median household value, electrician wage, population density, and 

median number of rooms.22 These variables possibly capture both demand- and supply-

side factors impacting PV adoption and final installation prices. For example, electrician 

wages might impact the underlying cost of PV installations (supply-side influence), 

whereas median household income might impact the willingness of homeowners to pay a 

premium for their PV installations (demand-side influence). Unfortunately, it is not 

possible to easily separate these demand- and supply-side influences. Figure 2 shows the 

                                                      
21 We also ran regressions without such weights; however, the results are less useful in that instance because 
larger cities with a great number of the installed solar systems dominate the regression results, not allowing 
for clean cross-city comparisons as is the goal of our analysis.  
22 Education was included in the regressions separately, not within the factor analysis. Though education 
levels might be correlated with “cost of living,” education might also impact PV prices through better price 
negotiation and more price comparison on the part of more-educated customers. 
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factor analysis results.23 Only one common factor (“cost of living”) is successfully 

extracted to capture the variation within the five variables, absorbing both demand- and 

supply-side influences. This common factor uses a standardized index to represent each 

city with a range from –2 to 2, and it contains 73.9% of the variance within these variables. 

In Figure 2, the numbers on the arrows are the factor loadings, which indicate how the 

variables are weighted in relation to the common factor and the correlation between the 

variables and the factor.24 

 

Figure 2. Factor analysis output: cost of living 

 

 

 

 

 

 

 

                                                      
23 Different combinations of variables were explored for the factor analysis, and these final five variables 
were selected to be reasonably comprehensive and representative. Using a subset of variables would produce 
similar results, since there is only one common factor that is extracted.  
24 The factor loading for roomnumber is negative because, all else being equal, areas with a higher cost of 
living are often more densely populated and host smaller homes.  



14 
 

4. Results 

This section presents estimates for the two installed-price regressions (one including 

both customer-owned systems and non-appraised-value TPO systems and one including 

only customer-owned systems) and the development-time regression. 

4.1. Price regressions: customer-owned and non-appraised-value TPO systems 

Table 2 presents results of the analysis on the larger sample that includes both 

customer-owned PV systems and non-appraised-value TPO systems. Table 1, earlier, 

shows the definitions of the independent variables used in these models. We ran five 

configurations of this analysis. Model P1 is the simplest form, including only a basic set of 

variables and very few controls. P2 adds the “cost of living” factor, and P3 adds the 

variables installation density and education. P4 and P5 are the same as P2 and P3, 

respectively, but with three major individual “cost of living” variables included instead of 

the common factor.  

The coefficients for residential permitting scores are negative in most models, except 

for P1, which did not control for the “cost of living” factor or the corresponding individual 

variables. Because model P1 lacks critical control variables, it suffers from omitted 

variable bias and is presented here only as a comparison point. As shown, the impact of 

excluding these essential control variables is substantial, reversing the sign from negative 

to positive. For models P2 through P5, the coefficients move around –$0.20/W. This 

implies that, with all else being equal, improving the permitting process by 100 points 

(using the DOE scale) appears to lower the average installation price by around $0.20/W. 

This effect is statistically significant at a 90-99% confidence level, depending on the model. 

As for the control variables, consistent with past analysis, PV systems exhibit strong 

economies of scale and diminishing returns of scale with respect to system size, both of 

which are significant at the 99% confidence level. The interpretation of the system size 

coefficients must consider both terms together (csize and csize2). Taking model P5 as an 

example, a 1-kW increase in system size from the mean value decreases the installation 

price by about $0.28/W ($0.349/W minus $0.069/W), all else being equal. However, a 2-

kW increase in size decreases the installation price by about $0.42/W, making the price 

reduction due to the second kW increase only $0.14/W.  
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Table 2. Regression outputs of installation prices: full sample 

Installation Price: 
$/W 

P1 P2 P3 P4 P5 

csize -0.394*** -0.349*** -0.347*** -0.349*** -0.349*** 

 
(0.016) (0.019) (0.019) (0.019) (0.019) 

csize2 0.079*** 0.068*** 0.068*** 0.069*** 0.069*** 

 
(0.006) (0.006) (0.006) (0.006) (0.006) 

res_permitting 0.281*** -0.176** -0.212*** -0.268*** -0.185* 

 
(0.075) (0.073) (0.079) (0.090) (0.100) 

PG&E -0.462*** -0.626*** -0.566*** -0.671*** -0.564*** 

 
(0.089) (0.087) (0.089) (0.087) (0.094) 

CCSE -0.467*** -0.449*** -0.302*** -0.395*** -0.366*** 

 
(0.103) (0.104) (0.111) (0.124) (0.124) 

month_perstart -0.017*** -0.012** -0.012** -0.012** -0.012** 

 
(0.005) (0.005) (0.005) (0.005) (0.005) 

factor_costofliving 
 

0.270*** 0.383*** 
  

  
(0.035) (0.061) 

  electrician 
   

0.071*** 0.046* 

    
(0.022) (0.024) 

medHHincome 
   

0.006* 0.015*** 

    
(0.003) (0.005) 

roomnumber 
   

-0.169** -0.295**  

    
(0.085) (0.127) 

installationdensity 
  

-0.036 
 

0.041 

   
(0.068) 

 
(0.080) 

college 
  

0.004 
 

-0.008 

   
(0.006) 

 
(0.007) 

bachelor 
  

-0.009*** 
 

-0.010** 

   
(0.003) 

 
(0.004) 

N 3,277 3,277 3,277 3,277 3,277 
r2_a 0.328 0.343 0.343 0.342 0.342 
df_m 6 7 10 9 12 

Note: robust standard errors in parentheses; *p < 0.10, **p < 0.05, ***p < 0.01.  
Among the three utility dummy variables, SCE is the baseline and thus is excluded in the 
regression. 
Data for factor_costofliving are calculated based on the factor analysis (see Section 3). 

 

After controlling for other factors, PV systems in the sample that are located in the 

Southern California Edison (SCE) service area show higher installation prices than 

systems in the Pacific Gas and Electric (PG&E) and California Center for Sustainable 

Energy (CCSE) areas; the specific reasons for this difference are not explored here but may 
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warrant further study. The coefficients of month_perstart indicate that system-level 

installation prices have been declining over time, consistent with expectations.  

“Cost of living,” captured by either the common factor or the separate variables, has a 

significantly positive impact on installation prices. Taking model P3 as an example, after 

controlling for other variables, higher “cost of living” cities (with the corresponding index 

increased from 0 to 1) are found to have average installation prices that are about 

$0.40/W higher than other cities. Though this result is consistent with the idea that cities 

with high costs of living generally have high installation prices, it is unclear whether this is 

dominated by a supply-side effect (e.g., higher underlying costs of installation labor) or a 

demand-side effect (e.g., wealthier areas being willing to pay more for premium PV 

systems). Regardless, without controlling for this relationship, the permitting scores 

inappropriately pick up the “cost of living” effect, as shown in model P1. The individual-

variable “cost of living” results are self-explanatory, with higher city-level electrician labor 

costs and median household incomes yielding higher-priced PV systems, on average. The 

roomnumber variable is negatively correlated with the extracted “cost of living” factor, so 

the negative coefficients for this variable in models P4 and P5 are expected. 

 The coefficients of installationdensity are not statistically different from zero in 

models P3 and P5, meaning that local learning experience was not significant or prevalent 

across these 44 cities in 2011, at least as defined by this single variable. This does not 

mean that local learning never occurs, however, as this variable is a relatively crude 

measure for such learning, and further exploration of learning effects is warranted.  

Finally, the city-level education variables are generally negative, with the variable 

bachelor exhibiting a stronger price-decreasing effect than the variable college. All else 

being equal, these results suggest that average installation prices could be $0.30/W lower 

in a city in which 35% of the population has a bachelor’s degree or higher compared with 

a city in which only 5% of the population has this level of education. The reasons for this 

relationship are not well known but may reflect better price negotiation and more price 

comparison on the part of more-educated customers. 
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4.2. Price regressions: excluding all TPO systems 

Table 3 presents results of the installed price regression analyses that exclude all TPO 

PV systems and therefore consist of only customer-owned systems. The purpose of this 

analysis is to assess whether inclusion of non-appraised-value TPO systems in the 

preceding regressions (Section 4.1) affects the results, using the same independent 

variables and model specification. 

As shown in the tabular regression summaries, the effect of the permitting process on 

installation prices is relatively larger when all TPO systems are excluded from the analysis. 

Based on models P3_v2 through P5_v2, improving the permitting process by 100 points is 

found to reduce average installation prices by about $0.30–0.50/W, in some cases up to 

twice as high as in the analysis that included non-appraised-value TPO systems. Many of 

the non-appraised-value TPO systems are located in cities with relatively low permitting 

scores and have relatively low prices; thus, excluding these systems creates a stronger 

(negative) effect on system prices by assigning more weight to systems with similarly low 

permitting scores but higher prices.  

As for the control variables, comparing the new model P5_v2 with P5, the economies-

of-scale effect increases from $0.28/W (P5) to $0.32/W (P5_v2) per 1-kW increase, while 

the diminishing returns of scale is almost the same for these two versions. The effects of 

the two utility dummy variables—PG&E and CCSE—are larger in the non-TPO version, 

indicating a stronger price advantage for these utilities relative to SCE. However, these 

effects might also have captured the time effect in the variable month_perstart, which 

becomes smaller and statistically insignificant as a result. The coefficients for “cost of 

living” remain relatively consistent. Among the individual “cost of living” variables, 

however, only electrician is statistically significant in the non-TPO version, with a higher 

coefficient estimate. Installationdensity and college are still insignificant, while bachelor 

passes the significance test in one of the two models.  
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Table 3. Regression outputs of installation prices: non-TPO version 

Installation Price: $/W P1_v2 P2_v2 P3_v2 P4_v2 P5_v2 

Csize -0.438*** -0.389*** -0.389*** -0.389*** -0.389*** 

 
(0.020) (0.024) (0.024) (0.024) (0.024) 

csize2 0.081*** 0.069*** 0.069*** 0.070*** 0.070*** 

 
(0.007) (0.008) (0.008) (0.008) (0.008) 

res_permitting 0.04 -0.280*** -0.332*** -0.508*** -0.448*** 

 
(0.086) (0.087) (0.095) (0.106) (0.121) 

PG&E -0.759*** -0.936*** -0.791*** -1.159*** -1.093*** 

 
(0.140) (0.138) (0.149) (0.146) (0.176) 

CCSE -0.722*** -0.725*** -0.337 -0.558*** -0.536*** 

 
(0.150) (0.150) (0.207) (0.165) (0.205) 

month_perstart -0.013* -0.006 -0.006 -0.007 -0.007 

 
(0.007) (0.007) (0.007) (0.007) (0.007) 

factor_costofliving 
 

0.265*** 0.397*** 
  

  
(0.038) (0.065) 

  electrician 
   

0.133*** 0.119*** 

    
(0.030) (0.034) 

medHHincome 
   

0.001 0.004 

    
(0.004) (0.007) 

roomnumber 
   

0.067 0.026 

    
(0.118) (0.205) 

installationdensity 
  

-0.096 
 

-0.008 

   
(0.059) 

 
(0.065) 

college 
  

-0.0002 
 

-0.006 

   
(0.007) 

 
(0.008) 

bachelor 
  

-0.012*** 
 

-0.004 

   
(0.004) 

 
(0.005) 

N 2,450 2,450 2,450 2,450 2,450 
r2_a 0.297 0.313 0.313 0.313 0.312 
df_m 6 7 10 9 12 

  Note: robust standard errors in parentheses; *p < 0.10, **p < 0.05, ***p < 0.01. 
Among the three utility dummy variables, SCE is the baseline and thus is excluded in the 
regression. 
Data for factor_costofliving are calculated based on the factor analysis (see Section 3). 
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4.3. Development-time regressions 

Table 4 presents results of the development-time analysis. The results suggest that 

better permitting practices would shorten development times significantly, though these 

results are less robust to alternative model specifications. 

Model specifications for development times are slightly different than those for 

installation prices. First, though PV system size might have a relationship with 

development times, economies of scale and diminishing returns of scale may not be as 

applicable as in the price-based regressions; we therefore retain system size but eliminate 

size-squared in the core regression results.25 Second, though “cost of living” is included in 

a subset of the models presented here, it is less intuitively obvious why such a factor 

would impact development times. As a result, when the factor is excluded in models T4 

and T5, we replace it with two individual variables for which an impact on development 

time seems plausible: median household income and population density. Third, we 

remove the month_perstart variable since we need not control for the same time-

influenced price-reduction effect as in the price regression. Finally, we add one control 

variable—weekcount—to account for the possibility that more systems in the incentive 

application, interconnection, and permitting queue could slow down the whole process. 

Other than these differences, the overall structures in the price and time regressions are 

similar.  

Model T1 is a reference, to show the results when not controlling for many important 

factors. Model T2 adds the “cost of living” factor, whereas T4 adds the individual variables 

medHHincome and popdensity. Model T3 adds four other variables to those included in T2, 

and T5 adds these same four other variables to those included in T4. As in the price 

regressions, because model T1 lacks critical control variables, it suffers from omitted 

variable bias with results that are opposite of what one might expect for the permitting 

variable and peculiar for other variables as well. 

The permitting score coefficients in models T2–T5 are all negative and significant, 

which is consistent with expectations. However, the magnitudes of the effect in models T2 

and T3 are greater than in the other two models. One possible explanation is that, because 

                                                      
25 We did conduct regressions with a square term for system sizes, but that coefficient was not found to be 
statistically significant.  
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the effects of the individual “cost of living” variables on development times could push the 

results in opposite directions (e.g., medHHincome and popdensity in Table 4), combining 

them (as in models T2 and T3) might not be appropriate. Focusing on models T4 and T5, 

improving the permitting process by 100 points is found, all else being equal, to speed 

development by roughly 10%. 

 

Table 4. Regression outputs of development times 

Development time: 
log(days) 

T1 T2 T3 T4 T5 

csize -0.034*** 0.006 0.007 0.011 0.008 

 
(0.009) (0.010) (0.009) (0.010) (0.009) 

res_permitting 0.104* -0.354*** -0.193*** -0.097* -0.101* 

 
(0.055) (0.059) (0.057) (0.052) (0.052) 

PG&E 0.210*** 0.026 -0.166*** 0.117** -0.173*** 

 
(0.046) (0.046) (0.052) (0.047) (0.052) 

CCSE -0.214*** -0.185*** -0.103* 0.045 -0.013 

 
(0.052) (0.051) (0.058) (0.055) (0.059) 

factor_costofliving 
 

0.263*** 0.201*** 
  

  
(0.020) (0.035) 

  medHHincome 
   

-0.005*** -0.006*** 

    
(0.001) (0.002) 

popdensity 
   

0.066*** 0.059*** 

    
(0.004) (0.006) 

weekcount 
  

0.066*** 
 

0.065*** 

   
(0.003) 

 
(0.003) 

installationdensity 
  

0.074* 
 

-0.008 

   
(0.041) 

 
(0.043) 

college 
  

-0.019*** 
 

0.004 

   
(0.004) 

 
(0.004) 

bachelor 
  

-0.009*** 
 

0.001 

   
(0.002) 

 
(0.002) 

N 3,277 3,277 3,277 3,277 3,277 
r2_a 0.067 0.125 0.212 0.143 0.221 
df_m 4 5 9 6 10 

       Note: robust standard errors in parentheses; *p < 0.10, **p < 0.05, ***p < 0.01.  
       Among the three utility dummy variables, SCE is the baseline and thus is excluded in the 

regression. 
       Data for factor_costofliving are calculated based on the factor analysis (see Section 3). 

 



21 
 

As for the control variables, the centered size (csize) variable is positive, suggesting 

that larger PV systems require slightly more development time (as might be expected), but 

the coefficient is not statistically significant at the 90% level. The development times for 

installations in PG&E and CCSE areas depend in part on whether weekcount is controlled 

for. After considering this congestion factor, results seem to suggest that systems in the 

PG&E area move through the development process more rapidly than in SCE’s service 

territory, while results for CCSE are less clear (understanding the reasons for these 

apparent differences is a subject for additional analysis).  

It is difficult to interpret the implication of using the “cost of living” factor in T2 and 

T3, but the individual variables included in models T4 and T5 have plausible (if untested) 

explanations. MedHHincome appears to affect development times negatively, suggesting 

that areas with higher income levels tend to have lower development times. Two possible 

explanations are that higher-income earners may place higher value in speeding the 

development process, or they may be willing and able to pay to speed that process. High 

popdensity, on the other hand, is found to slow the development process, possibly because 

denser neighborhoods might present additional PV-installation challenges in terms of 

neighbor complaints.  

Weekcount seems to have a significantly positive impact on development times, 

meaning that congestion causes delays in the installation process. As to the last three 

variables, models T3 and T5 find divergent results. Because T5 has a higher R2 value and 

medHHincome may have already captured the effect of high education levels, we tend to 

place more trust in T5, which finds no evidence of effects from education levels or 

installation density.  

Overall, while models T2–T5 find that challenging permitting practices lead to 

lengthier PV development processes, the statistical robustness of this result is not as 

persuasive as in the price-based regressions. First, the coefficient for the permitting 

variable is less stable to the alternative model specifications shown. Second, additional 

model specifications—not shown here—that include different sets or combinations of 

control variables and have different treatments for possible outliers lead to unstable 

coefficient estimates for the residential permitting variable that are sometimes 

statistically insignificant. Third, some of the control variables are found to have effects that 
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are less intuitively persuasive than in the price regressions. Fourth, while the overall 

explanatory power of both the price and development-time regressions is relatively low 

(see the R2), this is especially true in the case of development times; this is depicted 

graphically in the next section on model interpretation. Finally, as noted earlier and 

perhaps related to the concerns noted above, the definition of our development-time 

variable may be imperfect. 
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5. Model Interpretations 

Based on the regression results, we can predict installed prices and development times 

for each system. We can then average the predictions from the system level to the city 

level. To help interpret the regression results presented in the last section, below we show 

two predictions for installed prices and development times. The first shows the overall 

predictive performance of the regression models, while the second focuses on the 

marginal effects of the permitting process only.  

5.1. Installation prices 

To illustrate the overall goodness-of-fit of the installed-price regressions, we use 

model P5.26 We then use models P2–P5 and P2_v2–P5_v2 to display the marginal effects of 

permitting across model sensitivities.  

         Figure 3 shows the overall performance of model P5. The observed values are 

shown as circles. The predicted values are shown as diamonds with 95% confidence 

intervals (CIs). With few exceptions, the predicted prices are reasonably close to observed 

prices and within the model’s confidence intervals, providing confidence in the model’s 

specification and results. As also shown, San Francisco, Los Angeles, and Long Beach have 

both relatively high permitting scores and high installation prices. Such counter-intuitive 

correlations can only be explained after controlling for factors such as “cost of living” and 

education, as was done in most of the regression models. Otherwise, this scatter plot 

shows a counter-intuitively positive correlation between permitting scores and PV 

installation prices, consistent with model P1. 

 

 

 

                                                      
26 To minimize visual clutter, we do not use all the models to show the quality of the overall prediction. 
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         Figure 3. Overall goodness-of-fit of model P5 for installation prices 

  

The above prediction includes all of the information in the regression model and 

therefore tests the goodness-of-fit of the entire model, but it does not show the 

relationship between permitting scores and installed prices, i.e., the marginal effects of 

permitting. Figure 4 does this by calculating predicted installed prices using the 

coefficients of permitting scores from models P2–P5 and P2_v2–P5_v2, while using 

average values for all other model variables (because we use average values, not city-

specific values, we label cities by ID number, not by name, in this figure). The city with the 

lowest permitting score is depicted on the left side of the chart as the baseline, with its 

2011 mean installation price as the starting point, and every other city has a predicted 

average installed price determined by how it outperforms the baseline city in terms of 

permitting score and the coefficient of permitting scores in each model.  
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Figure 4. Predicted prices using permitting scores, all else being equal 

(permitting scores increase from left to right) 
 

In Figure 4, the 44 cities are listed in ascending order in terms of permitting scores. 

Therefore, the predicted installation prices decrease from left to right. Each curve 

represents the prediction results using one regression model. The curves are nonlinear 

because the permitting score steps between two cities are not necessarily equal. As 

reflected in the regression model results described earlier, the “v_2” models that exclude 

all TPO systems have larger variations than the equivalent models that include non-

appraised-value TPO systems.  

Across these eight models, permitting processes are found to cause differences in 

average PV installed prices among cities of up to $0.27–$0.77/W, depending on the model 

chosen. It is not clear which of the eight models better captures the real effect size. 

Regardless, across all models, this represents 4%–12% of median PV prices in California 

and indicates that different permitting procedures can have a meaningful impact on 

relative PV prices among cities. The magnitude of these price differences across cities can 

be compared with studies that quantify absolute average permitting costs at the national 

level (e.g., Ardani et al., 2012 found a national average price impact of $0.22/W for PII, as 
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reported earlier), demonstrating that estimated national average impacts mask more-

substantial impacts that occur at a local level. 

5.2. Development times 

We predict development times in a similar way. Figure 5 shows the overall predictive 

performance of model T5. Figure 6 highlights the marginal contributions from the 

permitting process (note that a log scale is used in Figure 5, while a linear scale is used in 

Figure 6). We only use models T4 and T5 to compare the marginal differences. We do not 

use T2 and T3 because interpretation of the “cost of living” factor is challenging, and we 

place more trust in alternative model forms. Again, the city on the far left has the lowest 

permitting score, while the city on the far right has the highest score.  

 

Figure 5. Overall goodness-of-fit of model T5 for development times (logarithm term27) 
 

The overall predictive performance of the models for development times is not as 

good as for installed prices, as illustrated by a comparison of Figure 3 and Figure 5. 

Focusing on Figure 5, it is clear that the ability of model T5 to accurately predict average 
                                                      

27 Although it is more intuitive to use the absolute value (not logarithm) of development times, computing the 
standard errors and confidence intervals for the former from the latter is complicated. Thus, we retain the 
logarithmic term here but convert to the level term in Figure 6.  
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development times at the city level is limited, especially at the extremes. Consequently, 

and for the reasons noted in the previous section, the statistical robustness of our results 

for development times is not as strong or persuasive as in the price-based regressions.  

The marginal effects of the permitting process in models T4 and T5 are very close to 

each other (Figure 6), masking the general instability of the coefficient for the permitting 

variable to alternative model specifications, as discussed earlier. Regardless, based on 

these two models alone, different permitting processes (as approximated by permitting 

scores) are found to cause average development-time differences among cities of up to 

about 24 days, or 25% of the median development time.  

 
Figure 6. Predicted development times using permitting scores, all else being equal 

(permitting scores increase from left to right) 
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6. Conclusions and Further Work 

Non-hardware business process (or “soft”) costs currently account for well over 50% 

of the installed price of residential PV systems in the United States, and understanding 

these costs is crucial for identifying further PV cost-reduction opportunities. City-level 

permitting processes—as one core element of business process costs—appear to have 

significant effects on installed PV prices and, though the analytical results are less robust, 

on project development times. Among the sample of California cities analyzed, those with 

the most favorable permitting processes are found to reduce average residential PV 

system prices by $0.27–$0.77/W (4%–12% relative to median pricing) and shorten 

development times by around 24 days (25% compared to the median development time) 

compared with cities with the most onerous permitting practices. The range of values 

depends on the regression model used, and results are more stable and persuasive for 

price impacts than they are for development-time impacts.  

Overall, these cross-city results are consistent with and add to previous attempts to 

quantify the national or regional average impact of permitting on installed costs and 

development times (e.g., Sunrun, 2011; Ardani et al., 2012; Clean Power Finance, 2012). In 

particular, they demonstrate that national or regional average impacts can mask the more-

substantial impacts that occur at a local level across individual cities.  

These findings provide some confirmation that the scoring mechanism used in the DOE 

Rooftop Solar Challenge is capturing real effects and, more importantly, illustrate the 

potential benefits of streamlining city-level permitting procedures for residential PV 

systems. Specifically, our results suggest that, all else being equal, streamlining the 

permitting process could potentially reduce the price of a 4-kW residential PV system by 

$1,000 or more,28 on average, and cut development time by about a month.  

As indicated earlier, multiple local, regional, state, and national efforts are already 

underway in the United States to streamline and bring down the cost of local permitting 

                                                      
28 As indicated earlier, these price impacts could include both direct costs, in the form of administrative labor 
and fees imposed on PV installers, as well as indirect costs, in the form of economic rents that accrue to 
installers as a result of barriers to entry into local markets created by onerous permitting processes. Though 
our analysis does not have the ability to separate these effects, the average permitting fee as documented by 
VoteSolar is around $400, and California law now establishes a ceiling on permitting fees of $500 for systems 
up to 15 kW.  
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procedures. Streamlined procedures must take care to adequately fund local governments 

for their time while not eviscerating the benefits of permitting for protecting consumers, 

promoting public safety, and rewarding the most diligent installers. Commonly discussed 

elements for streamlining are described in detail in other studies (Brooks, 2012; Stanfield 

et al., 2012; OPR, 2012), including the following: (1) developing regional or state-wide 

technical and procedural requirements to minimize local variations; (2) creating clear 

guidelines and checklists on permitting procedures and timelines; (3) using simple, 

standardized online application forms; (4) minimizing the number of departmental 

reviews; (5) limiting wait times; and (6) lowering permit fees. It is also increasingly 

recognized even within the solar community that responsibility for the present permitting 

challenges must be shared (because the source of delay is often inadequate documentation 

submissions by installers) and that a streamlined procedure should offer benefits not only 

to solar installers and their customers, but also to city permitting departments (Stanfield 

et al., 2012). Though the simplified and streamlined procedures used in Germany (Seel et 

al., 2013; see also the PVGrid project29) may not be wholly transferrable to the United 

States, reforms can clearly help lower the cost of and speed PV deployment. 

As for future research that would extend the analysis presented in this paper, one 

might expand the geographic reach of the present study to additional cities both within 

and outside of California. As sample size grows, it may also be appropriate to expand the 

analysis to include larger, commercial PV installations. Because the development-time 

results presented in this study are weaker than those for installed prices, further effort to 

improve the robustness of those results is warranted. Moving beyond installed prices and 

development times, it may also be useful to assess the impact of permitting on the amount 

of PV installed at the city level and/or PV installers’ interest in those cities. And, once 

multiple years of data on permitting scores are available, it may be possible to evaluate 

more directly the impact of the Rooftop Solar Challenge Program on all of these 

permitting-impact variables. Finally, one might use methods similar to those applied in 

this study to investigate other PV soft costs beyond permitting.  

  

                                                      
29 For information see http://www.pvgrid.eu/. 

http://www.pvgrid.eu/
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Appendix A. DOE Questionnaire—Residential Permitting Questions  
 
Section ---- Application 
1.  What is the average number of business days between application submission and 
decision (issuance or denial) regarding permit? (a municipal utility does not count as a city 
department here) 
A.  1             B.  2             C.  >3 
 
2.  What types of departmental approvals are required for a typical installation? (check all 
that apply) 
A.  Building         B.  Electrical          C.  Fire               D.  Mechanical       E.  Planning         
F.  Plumbing       G.  Structural         H.  Zoning         I.  Other, specify__________ 
 
3.  What approvals from Professional Engineers are required as part of the permit package 
for a typical installation? (Check all that apply) 
A.  Civil                                B.  Electrical                        C.  Environmental          
D.  Fire Protection           E.  Mechanical                     F.  Structural 
 
4.  What is the average time required for an installer/customer to complete a permit 
application for a typical installation? 
A.  ≤ half day                B.  1 - 2 days                C.  1 - 2 days 
 
5.  What are the options for obtaining an application? (Check all that apply) 
A.  Online         B.  Email         C.  In person         D.  Mail 
 
6.  What are the options for submitting an application? (Check all that apply) 
A.  Online         B.  Email         C.  In person         D.  Mail 
 
Section ---- Information Access 
7.  How is information describing the permitting process accessible? (Check all that apply) 
A.  Online and easily accessible       B.  Online       C.  Email        D.  In person/mail 
 
8.  Is there an accessible designated point of contact, with contact information available 
online, for questions about the PV permitting process? 
A.  Yes              B.  No 
 
Section ---- Permitting Process Time 
9.  Is there a policy to issue/deny PV permits within a specified number of business days 
from submission of application? 
A.  Yes, ≤ 3 days            B.  4-10 days            C.  > 10 days 
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10.  Does the jurisdiction track the number of days each permit takes to process? 
A.  Yes              B.  No 
 
11.  What is the average number of business days between application submission and 
decision (issuance or denial) regarding permit? 
A.  ≤ 3 days          B.  4-5 days          C.  6-10 days          D.  > 10 days 
 
12.  Are there mechanisms in place for accelerating PV permitting processes under certain 
conditions? 
A.  Yes, specify__________          B.  No 
 
Section ---- Fee 
13.  How is information on permit fees made available? (Check all that apply) 
A.  Online          B.  Email          C.  In person           D.  Mail          E.  Not Available 
 
14.  What is the average total for the applicable permit fee(s) for typical installations? 
A.  ≤$250              B.  $251 – 500                    C.  > $500 
 
15.  Is/are the permit fee(s) structured as flat, cost recovery, valuation open ended, or 
valuation capped? 
A.  Flat          B.  Cost Recovery         C.  Valuation Open Ended         D.  Valuation Capped   
E.  Valuation with Exclusions          F.  Other, specify__________ 
 
Section ---- Model Process 
16.  To what degree do you use the Solar ABCs expedited permitting process template for 
typical installations? 
A.  Default template                                   B.  Optional template    
C.  Have reviewed and considered        D.  Unaware/Reject 
 
Section ---- Inspection 
17.  What is the average number of business days from inspection request to actual 
inspection? 
A.  ≤ 2 days             B.  3-5 days              C.  6 -10 days             D.  > 10 days    
 
18.  What is the typical window of time given to the installer for final onsite inspection? 
A.  2 hrs                    B.  3-4 hrs                C.  5-8 hrs                   D.  > 1 day 
 
19.  How is information on inspection requirements made available? (Check all that apply) 
A.  Online          B.  Email          C.  In person           D.  Mail          E.  Not Available 
 



35 
 

20.  How many separate inspection trips are required for a typical installation? (Check all 
that apply) 
A.  Single Comprehensive Inspection   B.  Electrical Rough-in       C.  Electrical Final   
D.  Roof Penetrations (pre-install)        E.  Structural / Building Final     
F.  Other, specify__________ 
 
Section ---- Communication Protocol with Utility 
21.  Do the utility and local jurisdiction coordinate regarding inspection requirements and 
on-site inspection times for the permit inspection and interconnection inspection? 
A.  Yes, specify__________                B.  No 
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