

Distributed Solar Valuation: Cooperatives and Municipal Utilities

January 29, 2016

Prepared by:

Ben Norris Clean Power Research

Clean Power Research Solar Valuation and Fleet Modeling Studies

Utilities	Energy Agencies	Renewables Organizations				
Austin Energy CEPCI Duke Energy Nevada Power Portland General Electric SDG&E (USD) Tacoma Power "Utility X" We Energies	California PUC Minn. Dept. of Commerce Maine PUC NYSERDA Ontario Ministry of Energy	IREC MSEIA Solar San Antonio Utah Clean Energy "Organization Z" AEEI				

Why Calculate the Value of Solar?

Dual-Alis Tracks

- Determine whether net energy metering (NEM) rates are fair
 - Is there cross-subsidization to (or by) solar customers?
 - Is it necessary to add fixed, demand, or minimum charges to pay for infrastructure?
- Develop a value-based compensation
 - "Pay what it's worth"

pv system to 1.750 Dual-A is Trackes

Example: Possible Benefits of Solar

Utility costs

Energy costs

Fuel, plant O&M, wholesale power purchases

Examples

Plant capacity, transmission lines, substations, distribution lines

Metering, line maintenance, billing, customer service

Benefit of solar

Reduces all of these costs

Can reduce these,
depending upon
how well solar
generation matches
the corresponding
load profile

Generally, no impact

Capacity costs

Fixed costs

Example Calculation

Categories selected for Illustration

		Value	Match Factor		Savings Factor		PV Value
		Α	× B	×	(1+C)	=	D
		(\$/kWh)	(%)		(%)		(\$/kWh)
Demand Savings	Non-coincident Demand	V1	L1		S1		D1
	Coincident Demand	V2	L2		S2		D2
	Summer Demand	V3	L3		S 3		D3
Energy Savings	Supplier Energy Charges	V4			S4		D4
	Renewable Energy Credit	V5					D5
Added Costs	Incremental Metering	V6					D6
	Incremental Billing	V7					D7
	Voltage Regulation	V8					D8
Societal	Social Cost of Carbon	V9					D9
Benefits	Municipal Jobs	V10					D10
	 						Value

Load

Loss

Dual-Alis Tracke South)

Value

Distributed

PV Profile by System Orientation

pv system select to 1,750 Dual-A is Tracke South

Capacity "Buckets" by Orientation

(Illustrative)

pv system to 1.750 Dual-A is Tracke South

Determining Solar Production

- Option 1 Simulate
 - Simulate hourly solar "fleet" output for sample year(s)
 - Use actual utility loads to determine match factors
 - Calculate value applied to all distributed PV resources
- Option 2 Measure
 - Use interval meter readings to calculate energy and capacity benefits using same methodology
 - Calculate value applied to individual distributed PV resource

Illustration of Effective Capacity Calculation

Maine PV Fleet, ISO New England "Seasonal Claimed Capacity" Method

Valuation May be on All Solar Production or Export Only

Dual-Alis Tracks

to 1.750

Available Methodologies

Cost	Possible Methodologies
Demand Savings	 Include avoidable charges from wholesale schedule Calculate (or measure) hourly solar production Determine demand reduction and savings
Energy Savings	Use MISO nodal energy prices; orUtility owned generation (fuel costs, heat rates)
Added Costs	 Quantify incremental metering and billing costs Do not include costs paid by solar customers Count against other savings
Societal Benefits	Depends on benefits selectedThese benefits are typically paid by all customers

Project Goal: Valuation Methodologies for Cooperatives and Municipals

Dual-Alis Tracks

- Work with 2 or 3 utilities who will
 - provide wholesale schedules
 - review the draft methodology
- Interested?
 - Contact Ben Norris, ben@cleanpower.com